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Abstract
We consider the width XT (ω) of a convex n-gon T in the plane along the random
direction ω ∈ R/2πZ and study its deviation rate:

δ(XT ) =
√
E(X2

T ) − E(XT )2

E(XT )
.

We prove that the maximum is attained if and only if T degenerates to a 2-gon. Let
n ≥ 2 be an integer which is not a power of 2. We show that

√
π

4n tan(π/(2n))
+ π2

8n2 sin2(π/(2n))
− 1

is the minimum of δ(XT ) among all n-gons and determine completely the shapes of
T ’s which attain this minimum. They are characterized as polygonal approximations
of equi-Reuleaux bodies, found and studied by Reinhardt (Jahresber. Deutsch. Math.
Verein. 31, 251–270 (1922)). In particular, if n is odd, then the regular n-gon is one of
the minimum shapes. When n is even, we see that regular n-gon is far from optimal.
We also observe an unexpected property of the deviation rate on the truncation of the
regular triangle.
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1 Introduction

The width of an image along various directions is basic information in the Image
Processing Technique. We are interested in the deviation of the widths of compact
convex sets in the plane along a random direction. Although it is an important and
useful quantity both practically and theoretically, as far as we know, there is no serious
study on it.

Let � = R/2πZ = (−π, π ] and P be the normalized Lebesgue measure on �.
Consider the probability space (�,P); we write � for short. Let a compact convex
set T in the complex plane C be given. We identify T with its boundary. We discuss
the length of the orthogonally projected shadow of T by the light from a random
direction ω, say XT (ω). It is also interpreted as the width of T along the orthogonal
direction of ω, that is, ω ± π/2.

We are interested in the uniformity (or its contrary) of the deviation of XT (ω) with
respect to ω ∈ �. For this purpose, we consider the deviation rate of the random
variable XT , say δ(XT ), defined by

δ(XT ) =
√
E(X2

T ) − E(XT )2

E(XT )
,

where E( ) is the expectation of the random variables. Clearly, δ(XT ) is invariant
among the similarity images of T . It is also clear that δ(XT ) = 0 if and only if T
is a closed curve of constant width. The family of closed curves of constant width is
rich, and attracted many researchers. In Sect. 2, we review Reuleaux bodies briefly.
For additional background, the reader may consult [5, 6, 8].

Hence, δ(XT ) measures how far T is from convex bodies of constant width. For
the ellipse T = {(x, y) : x2/a2 + y2/b2 = 1} with the perimeter L , it is not difficult
to see that

δ(XT ) =
√
2π2(a2 + b2) − L2

L
.

In this paper, we study the deviation rate of the convex n-gons T with n ≥ 2. We
decompose XT as the sum of random variables coming from its edges, say XT =∑n

j=1 Xα j . Throughout this paper, the branch of the argument of a complex number
is chosen to be (−π, π ]. For a complex number α ∈ C with arg(α) = θ , define a
random variable Xα on � by

Xα(ω) = |α| sin (θ − ω)+

(this means (sin (θ − ω))+), where x+ = max {x, 0}. In other words, Xα(ω) is the
length of the orthogonally projected shadow of the right side of the vector

−→
0α by
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Fig. 1 XT (ω)

the light from the ω direction (the left side of the vector is permeable and makes no
shadow).

Let α1, α2, . . . , αn , n ≥ 2, be a sequence of distinct complex numbers. They are
arranged in counter-clockwise order forming a convex n-gon if and only if

arg(α2 − α1) ≤ arg(α3 − α2) ≤ . . .

≤ arg(αn+1 − αn) ≤ arg(α2 − α1) + 2π (mod 2π),
(1)

where we always consider the suffix j related to the n-gon T in modulo n, so that
αn+1 = α1, αn+2 = α2, etc. In this case, the convex n-gon with vertices α1, . . . , αn is
denoted by T = T (α1, . . . , αn).

The above T is non-degenerate (i.e., all the vertices are extremal points) if and
only if “<” holds everywhere in the above inequalities. If this is not the case, then
we identify T = T (α1, . . . , αn) with T (α′

1, . . . , α
′
m), where {α′

1, . . . , α
′
m} are the set

of extremal points among {α1, . . . , αn} arranged in counter clockwise order. Define a
random variable XT by

XT (ω) =
n∑
j=1

Xα j+1−α j (ω),

which agrees with the former explanation as to the length of the shadow of T (see
Fig. 1).

The set of convex n-gons T = T (α1, . . . , αn) can be identifiedwith the sequence of
n distinct complex numbers (α1, . . . , αn) satisfying (1).Wedenote the space consisting
of these (α1, . . . , αn) by�n . We consider the usual structures coming fromC

n on�n .
Then,

⋃n−1
k=2 �k is considered as the boundary of �n in the above sense.

Denote the factor space of �n divided by the similarity equivalence by �̃n . Then it
is a compact space. Most of our notions like the regular n-gon are notions in �̃n rather
than �n . The deviation rate δ(XT ) can be considered as a continuous and piecewise
smooth functional on �̃n . Hence, it has the minimum and the maximum in �n .

In this paper, we prove the following results.
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Fig. 2 Parallel truncation (left) and non-parallel truncation (right)

(i) The deviation rate for the compact convex sets T attains the maximum if and
only if T is the 2-gon (Theorem 1).

(ii) For the integer n ≥ 2 which is not a power of 2, the minimum of δ(XT ) for
T ∈ �n is

νn :=
√

π

4n tan(π/(2n))
+ π2

8n2 sin2(π/(2n))
− 1. (2)

Theorem 5 gives a complete characterization of the shapes that attain the mini-
mum value νn . As a consequence, we show that the minimum shape is nothing
but a Reinhardt n-gon (Theorem 6). The minimum value for odd n ≥ 3 is strictly
decreasing in n.

(iii) For even m ≥ 4, the regular m-gon is far from the minimum shape. Let n(< m)

be the odd number such that either n = m/2 or n = m/2 + 1. If n = m/2, then
δ(XTm ) = δ(XTn ) holds, and if n = m/2 + 1, then δ(XTm ) > δ(XTn ) holds,
where Tm, Tn are the regular m-gon and n-gon, respectively (Theorem 3).

(iv) Let T be the regular triangle. We call a truncation of it a quadrangle obtained
by cutting off a vertex by a line near it. It is called a parallel truncation if the
line is parallel to the opposite side, otherwise a non-parallel truncation (Fig. 2).
We prove that a small parallel truncation of the regular triangle increases the
deviation rate, while a small non-parallel truncation decreases it (Theorem 7).

2 Review on Ruleaux Bodies and Reinhardt Polygons

It turned out that the solution of the minimization problem of δ(XT ) is related to the
convex bodies of constant width. AReuleaux body1 is a convex body of constant width
whose boundary consists of a finite number of circular arcs with the center in it and the
radius equal to the width. For the self-containedness, we review the Reuleaux body
here briefly.

Let D be a Reuleaux body with width r . Then, C = ∂D consists of a finite number
of circular arcs, say C1, . . . ,Cp, of radius r . The endpoints of the circular arcs are

1 In literature, it is often referred to as a “Reuleaux polygon”, though its boundary is not linear. In this
paper, we use the word “body” to distinguish it from a genuine polygon.
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called essential if the two neighboring circular arcs have different centers, and hence
cannot be joined into a single circular arc.

We assume that the circular arcs C1, . . . ,Cp are arranged in counter clockwise
order and all the endpoints are essential. Let A1, A2 be the endpoints of C1; A2, A3
be the endpoints of C2, . . .; Ap, Ap+1 be the endpoints of Cp (the suffixes of C or A
are considered modulo p so that Ap+1 = A1). Note that a center of any one of the
circular arcs is an essential endpoint of some other circular arc on C , since otherwise,
we have two points in C with a distance larger than r . Conversely, any endpoint is a
center of some circular arc since there must be the same number of circular arcs and
centers.

Hence, the center of C1 is one of A3, . . . , Ap. Let it be Ak . Since D is strictly
convex, the tangent vector of C at c ∈ C to the counter clockwise direction rotates
counter clockwise as c moves. The center of the circular arc containing c ∈ C is the
other intersection of the normal line to the tangent vector at cwithC . This intersection
moves at the endpoints of the circular arcs in the counter clockwise direction since the
normal lines from the same point rotate in the counter clockwise direction. Hence, the
center of this circular arc is the next end point to that before. This means that if the
center of C1 is Ak , then the center of C2 is Ak+1, . . .

On the other hand, the center of the circular arc Ck must be A2 since otherwise,
either it is A1 or there is l �= 1, 2 such that Ak Al = r . The latter is impossible since
if so, by the convexity and the assumption on C , the circular arc C1 can be extended
to Al contradicting the assumption that both A1 and A2 are essential end points. The
former is impossible since if so, then we have a contradiction that A2Ak+1 > r . Thus,
we have

A2 = the center of Ck = A2k−1,

and hence, 2 ≡ 2k − 1 (mod p). This implies that p is odd.
Consider the diagonals connecting two points inC , one of the center and an interior

point of the circular arc centered by it. Any of two diagonals with different centers
always intersect just at one point. Let� j be the set of angles from A j to the points in the
circular arc centered by A j . We always consider the angles modulo 2π . Then, by the
above argument,� j and�l with j �= l are essentially disjoint. The same thingholds for
� j and �l +π . Let � = ⋃p

j=1 � j . Then, the union is essentially disjoint. Moreover,
� and � + π are also essentially disjoint. It also holds that � ∪ (� + π) = (−π, π ].
This is because the Lebesgue measure of � is π , since the integration of the exterior
angle of C is 2π , which counts the angles in � j , j = 1, . . . , p, twice, once at C j ,
once at its center, where the exterior angle jumps just the amount of angles in � j .

Thus, it holds that the circular arcs C1, . . . ,Cp can be embedded by parallel trans-
lations by v1, . . . , vp ∈ C into a circle S of radius r so that

�̃ :=
p⋃

j=1

(C j + v j ) ⊂ S
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Fig. 3 Reinhardt i3-gon for i = 1, 2, 3

satisfies that

# ((C j + v j ) ∩ (Ck + vk)) < ∞ for any j �= k,

# (�̃ ∩ Rπ�̃) < ∞ and �̃ ∪ Rπ�̃ = S,
(3)

where Rπ is the rotation on S by angle π , and “#” denotes the number of elements in
a set.

We write a Reuleaux p-body to indicate the number p of circular arcs with different
centers. In particular, a Reuleaux p-body is called regular if all the circular arcs have
the same length. A regular Reuleaux 3-body is well known as “Reuleaux triangle”.

A Reinhardt n-gon [3, 9] is an equilateral convex n-gon that can be inscribed in a
Reuleaux body, containing all the essential endpoints of the circular arcs. It is referred
to as a Reinhaldt polygon if n is not necessarily specified. If the lengths of the circular
arcs of a Reuleaux p-body have ratio n1 : n2 : . . . : n p with integer ni ’s, we can divide
the circular arcs into ni , i = 1, . . . , p, parts of equal length and take the convex-hull
of all the division points to get a Reinhardt n-gon, where n = n1 + · · · + n p, which
is called a Reinhardt (n1, . . . , n p)-gon.

In particular, let p ≥ 3 be an odd integer and take a regular Reuleaux p-body D.
We divide all the circular arcs of D into q parts of equal length. Then, the convex
hull of all the division points forms a Reinhardt pq-gon, which is a Reinhardt q p-gon,
where

q p = (q, . . . , q︸ ︷︷ ︸
p times

)

for short; see Fig. 3. Note that a Reinhardt 1p-gon is the regular p-gon.
A Reinhardt polygon gives the solution of three optimization problems on convex

n-gons when n is not a power of 2:

Problem 1 Maximize the perimeter for a fixed diameter [9].
Problem 2 Maximize the width for a fixed diameter [2].
Problem 3 Maximize the width for a fixed perimeter [1].

Given a cyclic integer vector (n1, n2, . . . , n p), there exists a unique way to construct a
Reinhardt (n1, n2, . . . , n p)-gon when this is possible. We reproduce a necessary and
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sufficient condition of Reinhardt [9] that a given integer cyclic vector (n1, n2, . . . , n p)

forms a Reinhardt (n1, n2, . . . , n p)-gon as a byproduct of our result (Theorems 5
and 6). In particular, when n is not a power of 2, there exists a Reinhardt (n/p)p-gon
for any odd divisor p > 1. Many interesting properties on Reinhardt polygons are
discussed in [3, 4, 6, 7]. When n is odd, the regular n-gon is one of the Reinhardt
polygons but it is not unique when n is in addition a composite. The Reinhardt n-gon
is unique if and only if n = p or 2p with p an odd prime. A Reinhardt polygon may
have no symmetry at all (see the figures in [3]).

3 Maximum of the Deviation Rate

Lemma 1 For any α, β ∈ C with η = arg(β/α) ∈ (−π, π ], the following statements
hold:

(i) E(Xα) = |α|/π ,
(ii) E(XαXβ) = |α| · |β| · V (η)/(4π), where V is a periodic function of period 2π

such that

V (x) = (π − |x |) cos x + sin |x |, −π < x ≤ π (See Fig. 4).

Proof (i) Let θ = arg(α). Then, we have

E(Xα) = |α|
2π

∫ 2π

0
sin (θ − ξ)+ dξ = |α|

2π

∫ π

0
sin ξ dξ = |α|

π
.
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(ii) We have

E(XαXβ) = |α| · |β|
2π

∫ 2π

0
sin (θ − ξ)+ sin (θ + η − ξ)+ dξ

= |α| · |β|
2π

∫

[0,π ]∩[−η,π−η]
sin ξ sin(ξ + η) dξ

= |α| · |β|
4π

∫

[0,π ]∩[−η,π−η]
(cos η − cos(2ξ + η)) dξ.

Therefore, if η < 0, then

E(XαXβ) = |α| · |β|
4π

∫ π

−η

(cos η − cos(2ξ + η)) dξ

= |α| · |β|
4π

((π + η) cos η − sin η) = |α| · |β|
4π

V (η).

If η ≥ 0, then

E(XαXβ) = |α| · |β|
4π

∫ π−η

0
(cos η − cos(2ξ + η)) dξ

= |α| · |β|
4π

((π − η) cos η + sin η) = |α| · |β|
4π

V (η). �

Theorem 1 The maximum of δ(XT ) for the compact convex sets T is attained by a
2-gon.

Proof Since all 2-gons are similar, they have the same δ-value. Let U = T (0, 1) be a
2-gon. Then by Lemma 1, we have

E(XU ) = 1

π
+ 1

π
= 2

π
, E(X2

U ) = 2V (0) + 2V (π)

4π
= 1

2
.

Hence, δ(XU ) = √
(π2/8) − 1.

Take any convex polygon T = T (α1, . . . , αn). We prove δ(XT ) ≤ √
(π2/8) − 1,

and the equality holds only when T is a 2-gon. Let

β j = α j+1 − α j = r j e
iθ j , j = 1, . . . , n,

and let θ jk ∈ (−π, π ] satisfy that

θ jk ≡ θ j − θk (mod 2π), j, k = 1, . . . , n.

It is sufficient to prove that

E(X2
T )

E(XT )2
≤ π2

8
.
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Hence, it is sufficient to prove

I := π3

2
E(XT )2 − 4πE(X2

T ) ≥ 0.

Then by Lemma 1, we have

I = π3

2
E(XT )2 − 4πE(X2

T ) = π3

2

⎛
⎝

n∑
j=1

E(X j )

⎞
⎠
2

− 4π
n∑

j,k=1

E(X j Xk)

= π3

2

⎛
⎝

n∑
j=1

r j
π

⎞
⎠
2

−
n∑

j,k=1

r jrkV (θ j − θk) =
n∑

j,k=1

r jrk

(
π

2
− V (θ j − θk)

)

=
n∑

j,k=1

r jrk

(
π

2
− (π − |θ jk |) cos θ jk − |sin θ jk |

)
. (4)

Since r jrk cos θ jk is the inner product between
−→
0β j and

−→
0βk , we have

n∑
j,k=1

r j rk cos θ jk =
〈

k∑
j=1

−→
0β j ,

k∑
j=1

−→
0β j

〉
= 〈−→0 ,

−→
0 〉 = 0.

This implies that in the above equality (4), the constant in the coefficient of cos θ jk

can be changed anyway keeping the equality. Hence, we have

I =
n∑

j,k=1

r jrk

(
π

2
−

(
π

2
− |θ jk |

)
cos θ jk − |sin θ jk |

)
.

Thus, to prove I ≥ 0, it is sufficient to prove that

(
π

2
− |x |

)
cos x + |sin x | ≤ π

2

for any x ∈ (−π, π ], which can be verified easily. Moreover, the equality holds if and
only if x = 0 or π , which implies that T is a 2-gon.

For a general compact convex set S with C = ∂S, replacing the above I by

I =
∫∫

C×C

(
π

2
−

(
π

2
− θ(u, v)

)
cos θ(u, v) − |sin θ(u, v)|

)
dudv,

where θ(u, v) is the angle between the tangent lines of C at u and v, we have the same
statement, which completes the proof. �
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4 Symmetrization and Asymmetrization of n-Gons

Let

H = {α ∈ C : �(α) > 0, or �(α) = 0 and �(α) ≥ 0}

be the upper half plane endowed with the quotient topology of C by identifying z and
−z. For α ∈ C, we define

ι(α) =
{

α α ∈ H,

−α α /∈ H.

For a finite set of nonzero complex numbers S = {α1, . . . , αn}, define ι(S) ⊂ H by

ι(S) = Abbreviation {ι(α1), . . . , ι(αn)},

where Abbreviation {α′
1, . . . , α

′
n} is the set of complex numbers obtained by replacing

any pair α′
j , α

′
k having arg(α′

j ) = arg(α′
k) by α′

j + α′
k .

A nonzero element in H is sometimes called a pre-edge. For a sequence of pre-
edges β1, . . . , βm ∈ H, we call B = B(β1, . . . , βm) a pre-edge bundle (of size m)
if

0 ≤ arg(β1) < arg(β2) < . . . < arg(βm) < π.

Denote by �m the set of pre-edge bundles of size m. For a convex n-gon T =
T (α1, . . . , αn), we define its asymmetrization ι(T ) as the pre-edge bundle B =
B(β1, . . . , βm) such that

ι({α2 − α1, α3 − α2, . . . , αn+1 − αn}) = {β1, β2, . . . , βm}.

In this case, T is called a realization of B. Let T = T (α1, . . . , αn) be a convex n-gon
and B = B(β1, . . . , βm) be its asymmetrization. Then,

U = T

(
γ, γ + β1

2
, . . . , γ + β1 + · · · + βm

2
, γ + β2 + · · · + βm

2
, . . . , γ + βm

2

)

is another realization ofB, where γ = −(β1+· · ·+βm)/4.We callU the symmetriza-
tion of T (or B). In this case, U is symmetric, that is, U = T (γ1, . . . , γ2k) with even
size 2k and

γk+1 = −γ1, γk+2 = −γ2, . . . , γ2k = −γk

holds. For a symmetric U = T (γ1, . . . , γ2k), it holds that

XU (ω) = 2|γ j | sin (arg(γ j ) − ω) (5)
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Fig. 5 T (left), B (center), and U (right)

for any ω with arg(γ j−1 − γ j ) ≤ ω ≤ arg(γ j − γ j+1). This representation of XU is
called the diagonal representation.

Example 1 Let T = T (−i, 1, 1+ i, i,−1). Then, its asymmetrization is B = B(1, 2+
2i, i,−1 + i) and its symmetrization is

U = T

(
−1

2
− i,−i, 1, 1 + i

2
,
1

2
+ i, i,−1,−1 − i

2

)
.

See Fig. 5.

Let β be a pre-edge with arg(β) = θ . Define a random variable X̃β as

X̃β(ω) = |β|
2

|sin(θ − ω)|,

and for a pre-edge bundle B = B(β1, . . . , βm), let X̃B = ∑m
j=1 X̃β j .

Theorem 2 If T is a realization of B, then we have XT = X̃B.

Proof Since T = T (α1, . . . , αn) is a convex polygon, we have XT (ω) = XT (ω + π)

for any ω ∈ �. Hence,

XT (ω) = XT (ω) + XT (ω + π)

2
=

n∑
j=1

Xα j (ω) + Xα j (ω + π)

2

=
n∑
j=1

|α j |
2

(sin(θ j − ω)+ + sin(θ j − ω − π)+)

=
n∑
j=1

|α j |
2

(sin(θ j − ω)+ + (− sin(θ j − ω))+)

=
n∑
j=1

|α j |
2

|sin(θ j − ω)| =
n∑
j=1

X̃ ι(α j ) =
m∑
j=1

X̃β j = X̃B. �
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5 Minimum of Deviation Rate Among the Pre-Edge Bundles of Fixed
Size

A regular n-gon is denoted by Tn , n = 2, 3, . . . A pre-edge bundle B(β1, . . . , βm) is
said to be regular if

|β1| = . . . = |βm |, arg(β j+1) − arg(β j ) ≡ π

m
(mod π), j = 1, . . . ,m.

Let Rm be the regular pre-edge bundle of size m.

Theorem 3 (i) With νm defined in (2), it holds that

δ(X̃ Rm ) = νm

for m = 1, 2, . . . , and hence, δ(X̃ R1) > δ(X̃ R2) > δ(X̃ R3) > . . .

(ii) If m ≥ 2 is even, then let n (< m) be the odd number such that either n = m/2
or n = m/2 + 1. If n = m/2, then δ(XTm ) = δ(XTn ) = δ(X̃ Rn ) holds, and if
n = m/2 + 1, then δ(XTm ) = δ(X̃ Rm/2) > δ(X̃ Rn ) = δ(XTn ) holds.

Proof Statement (ii) holds since both of Tn and T2n are realizations of Rn if n = m/2
is odd, and δ(XTn ) = δ(XT2n ) = δ(XTm ) = δ(X̃ Rn ) by Theorem 2. If n = m/2 + 1,
then by the monotonicity in (i), δ(XTn ) = δ(X̃ Rn ) < δ(X̃ Rm/2).

By Theorem 2, to prove (i), it is sufficient to prove that

δ(XT2m ) = νm, m = 1, 2, . . . ,

for T2m = T
(
eiπ/2m, ei3π/2m, . . . , eiπ(1+2(2m−1))/2m

)
. Using the diagonal representa-

tion (5), we have

E(XT2m ) = 2m

2π

∫ −π/2+π/m

−π/2
2 sin

(
π

2m
− ω

)
dω

= 2m

π

∫ π/(2m)

−π/(2m)

sin

(
π

2
− ω

)
dω = 2m

π

∫ π/(2m)

−π/(2m)

cosω dω,

hence

E(XT2m ) = 4m

π
sin

π

2m
.

Also,

E(X2
T2m ) = 2m

2π

∫ −π/2+π/m

−π/2
4 sin2

(
π

2m
− ω

)
dω

= 4m

π

∫ π/(2m)

−π/(2m)

sin2
(

π

2
− ω

)
dω
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= 4m

π

∫ π/(2m)

−π/(2m)

cos2ω dω = 2m

π
sin

π

m
+ 2.

Thus,

δ(XT2m ) =
√

E(X2
T2m

)

E(XT2m )2
− 1 =

√
π sin(π/m)

8m sin2(π/(2m))
+ π2

8m2 sin2(π/(2m))
− 1

=
√

π

4m tan(π/(2m))
+ π2

8m2 sin2(π/(2m))
− 1 = νm .

Let x = π/(2m) and I be the term inside the root in the above formula. Then, we
have

I = x

2 tan x
+ x2

2 sin2 x
− 1.

We show that I is an increasing function of x ∈ (0, π/2]. We have

I ′(x) = cos x sin x − x

2 sin2 x
+ x sin x − x2 cos x

sin3 x

= cos x sin2 x + x sin x − 2x2 cos x

2 sin3 x
.

Since

cos x ≤ 1 − x2

2
+ x4

24
and sin x ≥ x − x3

6
,

we have

(2 sin3 x) I ′(x)
= cos x sin2 x + x sin x − 2x2 cos x

≥ x

(
x − x3

6

)
− (2x2 − sin2 x)

(
1 − x2

2
+ x4

24

)

≥ x

(
x − x3

6

)
− 2x2

(
1 − x2

2
+ x4

24

)
+

(
x − x3

6

)2(
1 − x2

2
+ x4

24

)

= 11x6

72
− x8

36
+ x10

864
= x6

864
(x4 − 24x2 + 132)

which is positive on x ∈ (0, π/2]. Thus, I (x) is strictly increasing in x , and hence,
δ(XTm ) is strictly decreasing in m = 1, 2, . . . �
By a numerical calculation, we have δ(X̃ Rm ) as follows.

m | 1 2 3 4 5 6 7
δ | 0.48342 0.09772 0.04196 0.02333 0.01485 0.01028 0.00754
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Theorem 4 The deviation rate δ(X̃B) attains the minimum among B ∈ �m if and only
if B = Rm.

Proof We use induction on m. If m = 1, the statement is clear since R1 is essentially
the only element in �1. Let m ≥ 2 and assume that the statement holds for � j ,
j = 1, . . . ,m − 1. The boundary of the closure of �m consists of

⋃m−1
j=1 � j , and

the δ-values there are larger than δ(X̃ Rm ) by the assumption of the induction and
Theorem 3. Hence, there is B0 ∈ �m attaining the minimum of δ(X̃B) in �m . We
prove that B0 = Rm .

For this purpose, we take the symmetrization T0 ∈ �2m ofB0. Then, δ(XT0) is min-
imal among δ(XT ) for symmetric T ∈ �2m . This is equivalent to saying that κ(XT0) is
minimum among κ(XT ) for symmetric T ∈ �2m , where κ(XT ) = E(X2

T )/E(XT )2.
We’ll conclude from this that T0 is the regular 2m-gon.

Let T0 = T (α1, . . . , α2m). Consider the diagonal representation (5) of XT0 . Then,
for any j = 1, . . . , 2m, we have

XT0(ω) = 2|α j | sin (arg(α j ) − ω) if ω ∈ � j ,

where

� j = {ω ∈ � : arg(α j−1 − α j ) < ω ≤ arg(α j − α j+1)}.

For a fixed j = 1, . . . ,m and a real number λ near 0, let

T iλ
0 = T

(
α1, . . . , (1 + iλ)α j , α j+1, . . . , (1 + iλ)α j+m, . . . , α2m

)
.

By the minimality, we must have

dκ(XT λ
0
)

dλ

∣∣∣
λ=0

= 0.

Let

A = E(XT0), B = E(X2
T0), a j = E(XT01� j ), b j = E(X2

T01� j ).

Then, we have

E(XT λ
0

2)

E(XT λ
0
)2

= B − 2b j + 2(1 + λ)2b j

(A − 2a j + 2(1 + λ)a j )2
+ o(λ).

Therefore, we have

0 =
dκ(XT λ

0
)

dλ

∣∣∣
λ=0

= 4b j A − 4a j B

A3 ,
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and hence,

b j

a j
= B

A
for any j = 1, . . . , 2m.

Denoting

u j = arg(α j ) − arg(α j−1 − α j ) − π

2
, v j = arg(α j ) − arg(α j − α j+1) − π

2
,

it holds that

a j = E(XT01� j ) =
∫ arg(α j−α j+1)

arg(α j−1−α j )

2|α j | sin (arg(α j ) − ω)
dω

2π

= |α j |
π

∫ v j+π/2

u j+π/2
(−1) sinω dω

= |α j |
π

(
cos

(
v j + π

2

)
− cos

(
u j + π

2

))

= |α j |
π

(sin u j − sin v j )

b j = E(X2
T01� j ) =

∫ arg(α j−α j+1)

arg(α j−1−α j )

2|α j |2 sin2(arg(α j ) − ω)
dω

2π

= |α j |2
π

∫ v j+π/2

u j+π/2
(−1) sin2 ω dω

= |α j |2
π

(
u j − v j

2
+ sin(2v j + π) − sin(2u j + π)

4

)

= |α j |2
π

(
u j − v j

2
+ sin 2u j − sin 2v j

4

)
.

For j = 1, . . . , 2m, let

n j = the perpendicular leg from 0 to the line α j−1α j .

Then, the above u j and v j have another representation (see Fig. 6) that

u j = arg(α j ) − arg(n j ), v j = arg(α j ) − arg(n j+1) ∈ (−π, π ],
u j − v j = the exterior angle at α j > 0,

and we have

B

A
= |α j |(2u j − 2v j + sin 2u j − sin 2v j )

4(sin u j − sin v j )
for j = 1, . . . , 2m. (6)
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0

α j

α j−1

nj

α j +1

nj +1

j
uj

uj − j

v

v

Fig. 6 α j−1, α j , α j+1, n j , n j+1, u j , v j

For a fixed j = 1, . . . ,m and a real number λ near 0, let

T iλ
0 = T

(
α1, . . . , (1 + iλ)α j , α j+1, . . . , (1 + iλ)α j+m, . . . , α2m

)
.

Then, we have

E(XT λ
0

2)

E(XT λ
0
)2

= B + 2d2j λ/(2π) − 2d2j+1λ/(2π)

(A + 2d jλ/(2π) − 2d j+1λ/(2π))2
+ o(λ),

where

d j = XT0(arg(α j−1 − α j ))

= 2|α j | sin (arg(α j ) − arg(α j−1 − α j )) = 2|α j | cos u j ,

d j+1 = XT0(arg(α j − α j+1))

= 2|α j | sin (arg(α j ) − arg(α j − α j+1)) = 2|α j | cos v j .

Therefore, we have

0 =
dκ(XT iλ

0
)

dλ

∣∣∣
λ=0

= (d2j − d2j+1)A/π − 2(d j − d j+1)B/π

A3 ,

and hence, either d j = d j+1 or (d j + d j+1)/2 = B/A.

If (d j + d j+1)/2 = B/A holds, then by (6), we have

|α j |(2u j − 2v j + sin 2u j − sin 2v j )

4(sin u j − sin v j )
= |α j |(cos u j + cos v j ).

Hence,

2(u j − v j ) = sin 2u j − sin 2v j + 4 sin(u j − v j ).
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Since u j − v j > 0 and if u j − v j ≤ π/2, then sin(u j − v j ) ≥ 2(u j − v j )/π , we
have a contradiction that sin 2u j − sin 2v j + 4 sin(u j − v j ) > 2(u j − v j ). Therefore,
u j − v j > π/2 and the exterior angle of α j is larger than π/2. By the symmetry,
the exterior angle of αk for k �= j, j + π is smaller than π/2. Therefore, for these k,
(d j + d j+1)/2 = B/A is impossible, and hence, dk = dk+1. Thus, uk = −vk > 0.
This implies |nk | = |nk+1| for any k �= j, j + m.

In any case, we have |nk | = |nk+1| except for k = j, j +m. This implies that there
are two classes

|n j+1| = |n j+2| = . . . = |n j+m |,
|n j+m+1| = |n j+m+2| = . . . = |n j+2m |

(suffixes are considered modulo 2m). By symmetry, the values of these two classes
coincide. Thus, |n1| = |n2| = . . . = |n2m |, which implies that T0 has an inscribed
circle with radius r := |n1|. Hence, u j = −v j , j = 1, . . . , 2m. Then by (6),

B

A
= |α j |(2u j + sin 2u j )

4 sin u j
= |α j |(2u j + sin 2u j ) cos u j

4 sin u j cos u j

= r (2u j + sin 2u j )

2 sin 2u j
= r

2
· 2u j

sin 2u j
+ r

2
, j = 1, . . . , 2m.

It follows from this that 2u j/(sin 2u j ) is the same for j = 1, . . . , 2m. Since the
correspondence x �→ x/(sin x) for x > 0 is one-to-one, we have u1 = . . . = u2m .
Thus, T0 has the same exterior angle 2u j at vertex α j for j = 1, . . . , 2m. Together
with the fact that T0 has an inscribed circle, T0 is a regular 2m-gon, which completes
the proof. �

6 Minimum of Deviation Rate Among n-Gons

Lemma 2 If n ≥ 2, then the set

P(n) :=
⎧
⎨
⎩(c0, . . . , cn−1) ∈ {−1, 1}n :

n−1∑
j=0

c j exp
jπ i
n

= 0

⎫
⎬
⎭

is empty if and only if n is a power of 2.

Proof If n is not a power of 2, then take an odd factor p of n. Denote j = 0, 1, . . . , n−1
as

j = kn

p
+ �, � = 0, 1, . . . ,

n

p
− 1, k = 0, 1, . . . , p − 1.

Given c� ∈ {−1, 1} and � = 0, 1, . . . , n/p − 1 arbitrarily, define

c j = c�(−1)k, j = 0, 1, . . . , n − 1.
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Then, we have

n−1∑
j=0

c j e
jπ i/n =

n−1∑
j=0

c�(−1)k exp
(kn/p + �)π i

n

=
n/p−1∑
�=0

c� exp
�π i
n

p−1∑
k=0

(−1)k exp
kπ i
p

=
n/p−1∑
�=0

c� exp
�π i
n

⎛
⎝

(p−1)/2∑
k=0

exp
2kπ i
p

−
(p−1)/2∑
k=1

exp
(2k − 1)π i

p

⎞
⎠

=
n/p−1∑
�=0

c� exp
2π�i
n

⎛
⎝

(p−1)/2∑
k=0

exp
2kπ i
p

+
(p−1)/2∑
k=1

exp
(2k − 1 + p)π i

p

⎞
⎠

=
n/p−1∑
�=0

c� exp
2π�i
n

⎛
⎝

(p−1)/2∑
k=0

exp
2kπ i
p

+
p−1∑

k=(p+1)/2

exp
2kπ i
p

⎞
⎠

=
n/p−1∑
�=0

c� exp
2π�i
n

p−1∑
k=0

exp
2kπ i
p

= 0.

Therefore P(n) contains a non-empty subset

Q(p) := {
(c0, . . . , cn−1) ∈ {−1, 1}n : ckn/p+� = c�(−1)k

}

with #(Q(p))=2n/p. Thus we see that P(n) is non-empty. Next assume that n=2s

with s ≥ 1. Since xn + 1 ∈ Z[x] is the minimum polynomial of w := exp(π i/n),

n−1∑
j=0

c j exp
jπ i
n

= c0 + c1w + · · · + cn−1w
n−1

cannot be 0 for any (c0, c1, . . . , cn−1) ∈ {−1, 1}n . Hence, P(n) = ∅. �
Theorem 5 Let n ≥ 2 be an integer which is not a power of 2. Then we have

min
T∈�n

δ(XT ) = δ(X̃ Rn ) = νn

(see (2)). The minimum is attained if and only if the asymmetrization of T is the regular
pre-edge bundle Rn, and hence, if and only if T is similar to the polygon T (α1, . . . , αn)

with

{α j+1 − α j : j = 1, . . . , n} =
{
c j exp

jπ i
n

: (c0, . . . , cn−1) ∈ P(n)

}
.

Here P(n) is defined in Lemma 2.
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Proof In light of Theorem 4, T ∗ ∈ �n attains the minimum of δ(XT ) among T ∈ �n

if T ∗ is a realization of the regular pre-edge bundle Rn . A realization of Rn , say T ,
may have more than n edges but this number is reduced to n if and only if there
exists a one-to-one correspondence between the set of pre-edges {β1, . . . , βn} of Rn

and the set of edges of T , i.e., there exists (c0, c1, . . . , cn−1) ∈ {−1, 1}n such that
{c0β0, c1β1, . . . , cn−1βn−1} is the set of edges of T . Since we may assume β j =
exp( jπ i/n) for i = 0, . . . , n − 1, this condition is satisfied if and only if

n−1∑
j=0

c j exp
jπ i
n

= 0 (7)

is solvable in c j ∈ {−1, 1}, i.e., P(n) is non-empty. �

Hereafter n > 1 is always assumed to be an integer which is not a power of 2. There
is a natural map σ and τ from P(n) to itself defined by

σ ((c0, c1, . . . , cn−1)) = (c1, . . . cn−1,−c0) and

τ ((c0, c1, . . . , cn−1)) = (cn−1, cn−2, . . . , c0),

which corresponds to the symmetry of dihedral group D2n : the rotation of angle
π/n and the reflection. Two elements (c0, . . . , cn−1) and (c′

0, . . . , c
′
n−1) of P(n) give

congruent realizations if and only if

(c0, . . . , cn−1) = σ j (c′
0, . . . , c

′
n−1) or (c0, . . . , cn−1) = σ jτ (c′

0, . . . , c
′
n−1)

for some j ∈ {0, . . . , 2n−1}. Lemma 2 and Theorem 5 can be restated in a geometric
form.

Theorem 6 If 1 < n ∈ N is not a power of 2, then the minimum polygon in �n is
a Reinhardt n-gon and vice versa. A Reinhardt n-gon exists if and only if n is not a
power of 2.

Though it is not stated in this manner, the latter statement follows from the character-
ization of Reinhardt [9], see the discussion after the proof.

Proof Assume that 1 < n ∈ N is not a power of 2. By Theorem 5, the minimum n-
polygon T ∗ can be considered, without loss of generality, to have the asymmetrization

B
(
c exp

π i
2n

, c exp
3π i
2n

, . . . , c exp
(2n − 1)π i

2n

)

for some appropriate c > 0, so that its symmetrization is

T2n = T
(
e−nπ i/(2n), e(−n+2)π i/(2n), . . . , e(3n−2)π i/(2n)

)
.
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Let T ∗ = T (P1, P2, . . . , Pn). Since XT ∗ = XT2n and, by (5), XT ∗(ω) is a periodic
function of period π/n such that if ω ≡ η (mod π/n) with η ∈ (−π/(2n), π/(2n)],

XT ∗(ω) = 2 cos η.

Therefore, XT ∗(ω) for ω ∈ (0, 2π ] repeats its maximum 2 and its minimum
2 cos(π/(2n)), 2n times.

Since T ∗ has the asymmetrization of the same size n, there are no parallel edges
in T ∗. Hence, the endpoints of the minimum shadow of T ∗, say atω = jπ/n+π/(2n)

come from a vertex, say Pk , and an edge, say Pl Pl+1. Those of the two neighboring
maximum shadows come from the vertices Pk, Pl and from the vertices Pk, Pl+1,
respectively. Hence, Pk Pl = Pk Pl+1 holds. Replace the edge Pl Pl+1 by the circular
arc centered at Pk having the endpoints at Pl and Pl+1. Repeating this replacement
for j = 1, 2, . . . , n, we get a convex body of constant width. It is easy to see that this
convex body is a Reuleaux p-body for some p. Hence, T ∗ is a Reinhardt n-gon.

We prove the converse. Let T be a Reinhardt n-gon coming from a Reuleaux p-
body of width r . By (3), we can rearrange the circular arc of S by parallel translations
into a circle S of radius r so that the circular arcs are essentially disjoint and cover just
a half part of S, and by the rotation of angle π , they moved to the other half part of S.
The edges of T correspond to the chord of the circular arcs. By the above property,
it is easy to see that the asymmetrization of T is a regular pre-edge bundle of size n.
Hence, δ(XT ) = νn and T is the minimum polygon.

The “if” part of the last statement follows from the first part. To prove the “only
if” part, suppose that a Reinhardt n-polygon T exists for n = 2k . Then by the above
argument, T has the asymmetrization Rn which has a realization T of the same size.
This contradicts Lemma 2. �
Let us describe the correspondence between (c0, . . . , cn−1) ∈ P(n) and cyclic integer
vectors. Choose i ∈ {0, 1, . . . , 2n − 1} so that σ i (c0, . . . , cn−1) = (d0, . . . , dn−1)

with d0 = dn−1. Count the number of runs of 1 and −1 in (d0, . . . , dn−1), i.e., we
write (d0, . . . , dn−1) like 1n1(−1)n2 . . . or (−1)n11n2 . . . Then (n1, n2, . . . , n p) is the
desired cyclic vector. For the converse direction, we choose either 1n1(−1)n2 . . . or
(−1)n11n2 . . .

Reinhardt [9] gave an alternative characterization of the cyclic vector (n1, n2,
. . . , n p) with n = ∑p

i=1 ni : it is a cyclic vector if and only if p is odd and the
polynomial

1 − zn1 + zn1+n2 − · · · + zn1+n2+···+n p−1

is divisible by �2n(z), the 2n-th cyclotomic polynomial. For completeness, we show
that this characterization is equivalent to ours. As above, we assume that d0 = dn−1.
From (7) we have

n−1∑
j=0

d j z
j = 0 with z = exp

π i
n

.
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We consider that z is a variable and multiply by z − 1. Then we see

(z − 1)
n−1∑
j=0

d j z
j

= 1 − 2zn1 + 2zn1+n2 − · · · + 2zn1+···+n p−1 − zn

≡ 2 − 2zn1 + 2zn1+n2 − · · · + 2zn1+···+n p−1 (mod �2n(z)).

(8)

Dividing by 2, we see the condition of Reinhardt. To get the converse, we just go
backwards. Note that the polynomial in the last line of (8) is divisible by z − 1 as p is
odd. By Lemma 2, the second statement of Theorem 6 is derived from the Reinhardt
criterion.

The subset Q(p) in the proof of Lemma 2 corresponds to p-fold rotational sym-
metry. We can find Reinhardt polygons without any symmetry [3, 4].

7 Truncation of the Regular Triangle

Let X ,Y be general R-valued, square integrable random variables on the probability
space �. Assume further that X ≥ 0 everywhere and E(X) > 0. Recall that

κ(X) = E(X2)

E(X)2
= δ(X)2 + 1.

It holds for any t ∈ R with sufficiently small modulus that

κ(X + tY ) = E((X + tY )2)

E(X + tY )2
= E(X2)

E(X)2
· 1 + 2tE(XY )/E(X2) + t2E(Y 2)/E(X2)

1 + 2tE(Y )/E(X) + t2E(Y )2/E(X)2

= E(X2)

E(X)2

(
1 + 2t

(
E(XY )

E(X2)
− E(Y )

E(X)

)
+ O(t2)

)
.

If E(XY )/E(X2) − E(Y )/E(X) = 0, then we have

κ(X + tY ) = E(X2)

E(X)2

(
1 + t2

(
E(Y 2)

E(X2)
− E(Y )2

E(X)2

)
+ O(t3)

)
.

Hence, the following lemma holds.

Lemma 3 (i) Respectively,

dδ(X + tY )

dt

∣∣∣
t=0

>,=,< 0 ⇐⇒ E(XY )

E(X2)
>,=,<

E(Y )

E(X)
.

(ii) Assume that “=” holds in (i). Then, there exists ε > 0 such that

δ(X + tY ) >,< δ(X)
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for any t ∈ (−ε, ε) \ {0} if

E(Y 2)

E(X2)
>,<

E(Y )2

E(X)2
,

respectively.

Proof Statement (i) follows since

dδ(X + tY )

dt
= (κ(X + tY ) − 1)−1/2

2
· dκ(X + tY )

dt
,

and (ii) follows since δ(X + tY ) is a monotone increasing function of κ(X + tY ). �
Lemma 4 Let T and S be triangles in C. Then, XT = XS (a.s.) holds if and only if
there exists z ∈ C such that either S = T + z or S = −T + z.

Proof X−T = XT holds since they have the same asymmetrization. Hence, the “if”
part holds. Let us prove the “only if” part. Let T = T (α, β, γ ). Consider XT (ω) as a
function of ω ∈ R/Z. Then, it is locally minimal if and only if ω is equal to either of

± (arg(β) − arg(α)), ±(arg(γ ) − arg(β)), ±(arg(α) − arg(γ )) (9)

modulo 2π . If XT = XS (a.s.), then they should have the same set of ω as this. Also,
at any of these ω, they should have the same height. This implies that either S = T + z
or S = −T + z for some z ∈ C. �
Lemma 5 Let T and S be triangles in C. Then,

E(XT XS) ≤ E(X2
T )1/2E(X2

S)
1/2.

The equality holds if and only if there existλ ≥ 0 and z ∈ C such that either S = λT+z
or S = −λT + z.

Proof This is the Cauchy–Schwarz inequality for the inner product 〈X ,Y 〉 = E(XY ).
The equality holds if and only if there exists λ > 0 such that XS = λXT = XλT (a.s.).
Hence, by Lemma 4, if and only if S = λT + z or S = −λT + z for some z ∈ C. �
Lemma 6 Let T = T (α, β, γ ) be a regular triangle. Let σ ∈ C \ {0}. Then,

E(XT Xσ )

E(X2
T )

≤ E(Xσ )

E(XT )
.

The equality holds if and only if
−→
0σ is parallel to one of the edges of T , that is, arg(σ )

is equal to one of (9) modulo 2π .
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Proof Without loss of generality, we assume that the length of the edges of T is 1.
Recall Lemma 1. It holds that E(Xμz1Xμz2) = E(Xz1Xz2) for any μ, z1, z2 ∈ C with
|μ| = 1. Moreover, since e2π i/3T = T , we have

E(XT Xσ ) = E(XT Xe2π i/3σ ) = E(XT Xe4π i/3σ ).

Hence, E(XT Xσ ) = E(XT XS)/3 with the regular triangle S = T (0, σ, eπ i/3σ).
Therefore by Lemma 5,

E(XT Xσ ) = E(XT XS)

3
≤ E(X2

T )1/2E(X2
S)

1/2

3

= E(X2
T )1/2E((|σ |XT )2)1/2

3
= |σ |

3
E(X2

T ).

The equality holds if and only if
−→
0σ is parallel to one of the edges of T . Thus, we have

E(XT Xσ )

E(X2
T )

≤ |σ |
3

= E(Xσ )

E(XT )

with the equality if and only if
−→
0σ is parallel to one of the edges of T . �

Theorem 7 A sufficiently small parallel truncation of the regular triangle increases
the deviation rate, while a sufficiently small non-parallel truncation decreases it.

Parallel Truncation: Let T = T (α, β, γ ) be a regular triangle of the edge length 1.
We also assume that it is of counter clockwise order. Let t > 0 be sufficiently small.
Let

βt = (1 − t)α + tβ, γt = (1 − t)α + tγ.

Let

Vt = T (βt , β, γ, γt )

be a parallel truncation of T at α. Then, we have

XVt = Xβ−βt + Xγ−β + Xγt−γ + Xβt−γt

= XT − t Xβ−α − t Xα−γ + t Xβ−γ = XT − t XY

with Y = Xc + Xb − X−a, where we denote a = γ − β, b = α − γ , c = β − α.
Since E(Xc) = E(Xb) = E(X−a) = 1/π by Lemma 1, we have,

E(XT Xc)

E(X2
T )

= E(XT Xb)

E(X2
T )

= E(XT X−a)

E(X2
T )

= 1/π

E(XT )
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by Lemma 6 and hence,

E(XT Y )

E(X2
T )

= E(XT Xc) + E(XT Xb) − E(XT X−a)

E(X2
T ) + E(X2

T ) − E(X2
T )

= 1/π

E(XT )
= E(Y )

E(XT )
.

Now, we prove that

E(Y 2)

E(X2
T )

>
E(Y )2

E(XT )2

so that δ(Vt ) > δ(T ) for sufficiently small |t | �= 0 by Lemma 3. We have

E(Y ) = E(Xb + Xc − X−a) = 1

π
, E(XT ) = 3

π
,

E(Y 2) = E((Xb + Xc − X−a)
2) = 3

4
+ 2(V (2π/3) − 2V (π/3))

4π
= 1

3
−

√
3

4π
,

E(X2
T ) = 3

4
+ 6V (2π/3)

4π
= 1

2
+ 3

√
3

4π
,

E(Y 2)

E(X2
T )

= 1/3 − √
3/(4π)

1/2 + 3
√
3/(4π)

= 0.214 . . . >
1

9
= E(Y )2

E(XT )2
,

and complete the proof that δ(Vt ) > δ(T ) for sufficiently small |t | �= 0 in the case of
parallel truncation.

Non-Parallel Truncation: Let T = T (α, β, γ ) be a regular triangle of the edge
length 1. We also assume that it is of counter clockwise order. Let 0 < λ �= 1 and
t > 0 be sufficiently small. Let

βt = (1 − t)α + tβ, γt = (1 − λt)α + λtγ.

Let Vt = T (βt , β, γ, γt ) be a non-parallel truncation of T at α. Then, we have

XVt = Xβ−βt + Xγ−β + Xγt−γ + Xβt−γt

= XT − t Xc − t Xλb + t Xe = XT − tY ,

where we denote b = α − γ , c = β − α, e = c + λb, and Y = Xc + Xλb − Xe. By
Lemma 6, we have

E(XT Xc)

E(X2
T )

= E(XT Xb)

E(X2
T )

= 1/π

E(XT )
and

E(XT Xe)

E(X2
T )

<
|e|/π
E(XT )

.

Hence,

E(XT Xc) + λE(XT Xb) − E(XT Xe)

E(X2
T ) + λE(X2

T ) − |e|E(X2
T )

>
1/π

E(XT )
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Fig. 7 Left: δ-minimum, Center: Problems 1 and 2, Right: Problem 3

and we have

E(XT Y )

E(X2
T )

>
(1 + λ − |e|)/π

E(XT )
.

Thus, by Lemma 3,

dδ(XT + tY )

dt

∣∣∣
t=0

> 0,

which implies that

δ(XVt ) = δ(XT − tY ) < δ(XT )

if t > 0 is small, which completes the proof.

8 Remaining Problems

When n is a power of 2, the method in this paper does not apply because by Lemma 2,
there is no n-gon realization of the regular pre-edge bundle Rn . The case n = 4 may
be of special interest.

By numerical calculation, a possible minimum of δ in �4 is attained by the kite-
shape with vertices

(A, B,C, D) ≈ ((0,−0.24213332485), (1, 0), (0, 1.67502597318), (−1, 0))

having the deviation rate 0.035306425. This is not a solution to any of three optimiza-
tion problems for n = 4 in the introduction. See Fig. 7 for a comparison of solutions
having the same horizontal width. Indeed from AB < AC < BC < BD, we see that
this shape is not optimal for Problems 1 and 2. The optimizers for these problems are
the same, which is based on the regular triangle with an additional vertex similar to
the construction of Reinhardt polygon, see [2, 6]. The kite ABCD is not optimal for
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Problem 3 either. Indeed, [1] showed that the maximum width of quadrangles with

the unit perimeter is close to
√

−9 + 6
√
3/4 ≈ 0.295, possibly attained by

((
0,−

√
−3 + 2

√
3

3

)
, (1, 0),

(
0,

√
1 + 2√

3

)
, (−1, 0)

)
,

while the kite shape gives the value 0.288. For Problems 1–3, the solutions have
algebraic expressions. We do not know if our kite has such an algebraic expression.

In a subsequent paper, we will discuss the minimality of δ-values and the minimal
shapes under all infinitesimal deformations including the cases when n is a power of 2.
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