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1 Motivation

I studied the maximal pattern complexity with Luca Zamboni [5, 6] arround
2000 which is developed to the study of pattern recognition problems with Yu-
Mei Xue [12, 13] arround 2010 to find an optimal set of observation points to
distinguish the maximal possible patterns in a given set of patterns among the
sets of observations of the same finite size. An optimal position is by definition
a set of points whose every finite subset attains this optimal. The restriction of
the set of observation points to such an optimal position defines a uniform set
and uniform complexity attaining the maximal pattern complexity always. At
the same time, I was interested in the symbolic dynamics at time infinities in the
sense of Stone-Cech compactification and arrived at super-stationary sets which
are subclass of uniform sets. They are determined by finite sets of prohibited
super-subwords and the structures are easy to analyze. Moreover, every uniform
complexities are realized by them (partly with Hui Rao, Bo Tan and Yu-Mei Xue
[7, 8, 9, 10, 11, 14, 15]). This makes the structure of uniform complexity clear.
Different from the usual complexity, the entropy of the uniform complexity
takes values only at the logarithm of positive integers (see Remark 4). It comes
from the exponentially increasing main term, and dividing by this term, we get
polynomial order term and not in between. We also discussed the meaning of
the symbolic dynamics at time infinities coming from geometrical dynamics and
found out that it corresponds to the infinitesimal quantities the infinite time
(that is, non-princicipal ultra-filter) has. Finally, we discuss conditions that the
super-stationary sets coming from a symbolic dynamics are always the full set.
For example, Thue-Morse system has this property.

2 Remote moves and super-stationary sets

In the study of symbolic dynamics with discrete time, we concern specially the
system at time of a fixed infinity in the sense of Stone-Cech compactification.
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That is, let Ω be a nonempty closed subset of AN (not necessarily be shift-
invariant), where A is a finite set with #A ≥ 2 and N = {0, 1, 2, · · · }. An
element ω ∈ AN is often written as an infinite sequence ω(0)ω(1)ω(2) · · · . Let
βN be the Stone-Cech compactification of N and χ ∈ βN \ N. Note that χ is a
non-principal ultra-filter on N, which can be considered as an infinite time while
N is interpreted as the set of finite times. Another interpretation is that βN \N
is the set of finitely additive, non-atomic probability measures on N taking the
values either 1 or 0 at S according to S ∈ χ or not, whereas n ∈ N is identified
with the unit measure at n (hence, σ-additive).
For ω ∈ Ω and χ ∈ βN \ N, ω(χ) ∈ A is defined so that ω(χ) = a if and only

if {i ∈ N; ω(i) = a} ∈ χ. That is, ω(i) = a almost surely with respect to χ.
For i ∈ N, define Ω[i] = {ω(i); ω ∈ Ω} ⊂ A. Then, it is extended to the above
χ so that Ω[χ] = S ⊂ A if and only if {i ∈ N; Ω[i] = S} ∈ χ. We remark that
Ω[χ] = {ω(χ); ω ∈ Ω} does not hold in general for χ ∈ βN \ N (Example 1).

For χ1, χ2 ∈ βN, we define χ1 ⊗ χ2 ∈ β(N × N) so that for any S ⊂ N × N,
S ∈ χ1 ⊗ χ2 if and only if

{i ∈ N; {j ∈ N; (i, j) ∈ S} ∈ χ2} ∈ χ1 ([1, 15, 16]).

This is just defining the product measure by the successive integrations with the
2nd coordinate first. Since the measure χ ∈ βN \ N is not σ-additive, Fubini’s
Theorem does not hold. In fact, we have

{(i, j) ∈ N2; i < j} ∈ χ⊗ χ but {(j, i) ∈ N2; i < j} ̸∈ χ⊗ χ.

Of course for i, j ∈ N, i ⊗ j is just the couple (i, j) ∈ N × N and Ω[i ⊗ j] is
defined as {ω(i)ω(j); ω ∈ Ω} ⊂ A2. This operation is extended to χ1 ⊗ χ2 so
that U = Ω[χ1 ⊗ χ2] ⊂ A2 if and only if S := {(i, j); Ω[i⊗ j] = U} ∈ χ1 ⊗ χ2,
that is

{i ∈ N; {j ∈ N; (i, j) ∈ S} ∈ χ2}
= {i ∈ N; {j ∈ N; {ω(i)ω(j); ω ∈ Ω} = U} ∈ χ2} ∈ χ1.

Different from a finite time i ∈ N, where Ω[i ⊗ i] = {aa; a ∈ Ω[i]}, Ω[χ ⊗ χ]
may contain elements ab with a ̸= b as is shown below.

Example 1. Let χ ∈ βN \ N and

Ω = {0i1∞; i = 0, 1, 2, · · · } ⊂ {0, 1}N.

Then, we have Ω[χ] = {0, 1} while {ω[χ]; ω ∈ Ω} = {1}. Moreover, we have
Ω[χ⊗ χ] = {00, 01, 11} for any χ ∈ βN \ N since

{(i, j) ∈ N× N; {ω(i)ω(j); ω ∈ Ω} = {00, 01, 11}} = {(i, j); i < j} ∈ χ⊗ χ.

To make clear what happens at infinity, we define Ω[χ∞] := Ω[χ ⊗ χ ⊗ · · · ].
Let

χ1 ⊗ · · · ⊗ χn ⊗ χn+1 = (χ1 ⊗ · · · ⊗ χn)⊗ χn+1
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inductively for n = 1, 2, · · · . Let Ω[χ1 ⊗ χ2 ⊗ · · · ] ⊂ AN be the project limit of
Ω[χ1 ⊗ · · · ⊗ χn] as n → ∞. Thus we define Ω[χ∞], which is called the remote
move of Ω at χ. Note that for a closed set Ω ⊂ AN and an increasing sequence
of nonnegative integers n0 < n1 < n2 < · · · ,

Ω[n0 ⊗ n1 ⊗ n2 ⊗ · · · ] = {ω(n0)ω(n1)ω(n2) · · · ; ω ∈ Ω} ⊂ AN.

A closed subset Ω ⊂ AN is called super-stationary if for any increasing se-
quence of nonnegative integers n0 < n1 < n2 < · · · ,

Ω[n0 ⊗ n1 ⊗ n2 ⊗ · · · ] = Ω

holds. It is known (Theorem 1) that Ω[χ∞] is super-stationary for any χ ∈ βN.
This means in special by taking ni = i+ l (i = 0, 1, 2, · · · ; l ∈ N), Ω[χ∞] is shift
invariant, that is, invariant under where to start the observation. Furthermore,
it is invariant under any choice of the observation times as long as keeping the
order. Thus in the remote moves, the quantities of time, hence the clocks are of
no use, only asking which is before or after makes sense.

A remote move is called trivial if it is contained in {a∞; a ∈ A}.
For a subset S of a compact metric set K, the set of accumulate points of S is

denoted by S′ and called the derived set of S. The derived set of S′ is denoted
by S′′ or S(2) and is called the second derived set of S. In the same way, we
define k-th derived set S(k). The accmulation degree of S is defined to be the
smallest k such that S(k+1) = ∅ if such k exists, otherwise ∞.

Theorem 1. [15]
Let Ω ⊂ AN be an arbitrary nonempty closed set. Then for any χ ∈ βN, we have
(1) Ω[χ∞] is super-stationary,
(2) Ω[χ∞] = Ω holds if Ω is super-stationary and χ ∈ βN \ N,
(3) if there exists an increasing sequence n0 < n1 < n2 < · · · of nonnegative
integers such that Ω[n0 ⊗ n1 ⊗ n2 ⊗ · · · ] is super-stationary, then Ω[χ∞] =
Ω[n0 ⊗ n1 ⊗ n2 ⊗ · · · ] holds for any χ ∈ βN \ N such that {n0, n1, n2, · · · } ∈ χ,
(4) the increasing sequence as (3) exists if Ω has a finite accumulation degree,
(5) Ω[χ∞] is trivial if χ ∈ N or #Ω <∞.
If (3) holds, we say that the remote move of Ω at χ is attainable.

Example 2. Let X = R/Z and f : X → X be f(x) = x + α (mod 1), where
α is an irrational number. Let 0 < u < v < 1 and define κ : X → A with
A = {0, 1, 2} by

κ(x) =

 0 x ∈ [0, u)
1 x ∈ [u, v)
2 x ∈ [v, 1)

(mod 1).

Define ω0 ∈ AN by ω0(n) = κ(fn(0)) (∀n ∈ N). Let Ω be the closure of
{Tnω0; n ∈ N}, where T is the shift on AN.
Let f0 : N → R/Z be f0(n) = nα (mod 1). Then, this mapping is extended

to the mapping βN → β(R/Z) so that for χ ∈ βN, f0(χ) is defined by f0(χ) =
{S ⊂ R/Z; {n ∈ N; f0(n) ∈ S} ∈ χ}. Then, p ∈ R/Z is determined by
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f0(χ) so that {x ∈ R/Z; |x − p| < ϵ} ∈ f0(χ) for any ϵ > 0 or equivalently,
{n ∈ N; |nα−p| < ϵ (mod 1)} ∈ χ. This p is denoted as lim f0(χ). Furthermore,
either

{n ∈ N; 0 < nα− p < ϵ (mod 1)} ∈ χ

holds for any ϵ > 0, or

{n ∈ N; − ϵ < nα− p < 0 (mod 1)} ∈ χ

holds for any ϵ > 0. The former case, we say f0(χ) (or χ) is of (−)type, while
the latter case, of (+)type.
Define Π+, Π− ⊂ {0, 1, 2}N by

Π+ = {0n1∞; n ∈ N} ∪ {1n2∞; n ∈ N} ∪ {2n0∞; n ∈ N}
Π− = {0n2∞; n ∈ N} ∪ {2n1∞; n ∈ N} ∪ {1n0∞; n ∈ N}.

Then, the following statement holds.

Lemma 1. For any χ ∈ βN \ N, Ω[χ∞] = Π+ if f0(χ) is of (+)type, while
Ω[χ∞] = Π− if f0(χ) is of (−)type. Moreover, some of them are attainable, but
some of them are not.

Proof Let χ ∈ βN \N. Note that for any k = 1, 2, · · · , M ∈ N and increasing
functions ψ : N → N,

{(i0, i1, · · · , ik) ∈ Nk+1; M < i0, ψ(ij−1) < ij (j = 1, 2 · · · , k)} ∈ χk+1.

Without loss of generality, assume that χ ∈ βN \ N is of (+)type. Let p =
lim f0(χ). Then for any ϵ > 0, using the above statement, we have

{(i0, j1, · · · , ik) ∈ Nk+1; p− ϵ < j0α < j1α < · · · < jkα < p (mod 1)} ∈ χk+1.

Hence,

Ω[χk+1] = {0n1k+1−n; 0 ≤ n ≤ k} ∪ {1n2k+1−n; 0 ≤ n ≤ k}
∪ {2n0k+1−n; 0 ≤ n ≤ k}.

Taking the project limit, we have Ω[χ∞] = Π+, proving the one half of our
Lemma.
Now, let us prove the existences of both attainable and non-attainable χ.

The existence of attainable χ is clear by taking any χ ∈ βN \ N such that
there exists an increasing sequence n0 < n1 < n2 < · · · of nonnegative integers
satisfying that {niα} converges monotonously to 1 and {n0, n1, n2, · · · } ∈ χ,
where {x} ∈ [0, 1) denotes the fractional part of x ∈ R. Then,

Ω[χ∞] = Ω[n0 ⊗ n1 ⊗ n2 ⊗ · · · ] = Π+.

To prove the existence of non-attainable χ ∈ βN \ N, take any χ which is
contained in

{S ⊂ N; {{nα}; n ∈ S} ⊂ (1− ϵ, 1) and 1 ∈ {{nα}; n ∈ S}′′}
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for any ϵ > 0. Then, it holds that Ω[χ∞] = Π+, but for any S = {n0 < n1 <
n2 < · · · } ∈ χ, Ω[n0⊗n1⊗n2⊗· · · ] contains ω having 10, 21, 02 as its subwords.
Hence, Ω[n0 ⊗ n1 ⊗ n2 ⊗ · · · ] ̸= Π+, 2

Remark 1. For any χ ∈ βN \ N and n ∈ N, we can define χ + n ∈ βN
so that S ∈ χ + n if and only if S − n = {s − n; s ∈ S, s ≥ n} ∈ χ. Then,
Ω[χ⊗(χ+1)⊗(χ+2)⊗· · · ] is a T -invariant closed set including Ω∞ :=

∩∞
n=0 T

nΩ,
where T is the shift on AN. Because of the remote move, it is usually strictly
bigger than Ω∞.

3 Full remote moves

The remote move of Ω seems to be small if Ω is small, but sometimes not. In
this section, we obtain a sufficient condition for it to be the full set in the case
A = {0, 1}. This condition is satisfied, for example, by the Thue-Morse system.

Definition 1. For ω ∈ {0, 1}N and S = {s1 < s2 < . . .} ⊂ N with #S < ∞ or
#S = ∞, define

λ(S, ω) = sup
m∈N

∑
i

(ω(si +m)− ω(si+1 +m))2,

where
∑
i

denotes

k−1∑
i=1

if #S = k <∞ and

∞∑
i=1

if #S = ∞.

Theorem 2. [15] Let ω0 ∈ {0, 1}N and Ω be the closure of {Tnω0; n ∈ N} ⊂
{0, 1}N, where T : {0, 1}N → {0, 1}N is the shift. For any χ ∈ βN \ N, the
following statements hold.
(1) Ω[χ∞] = {0, 1}N holds if there exists a sequence (Uk ∈ χk; k = 1, 2, . . .)
such that

lim
k→∞

inf
S∈Uk∩∆k

λ(S, ω0) = ∞,

where
∆k := {(s1, . . . , sk) ∈ Nk; s1 < . . . < sk}

and (s1, . . . , sk) ∈ Uk ∩∆k is identified with {s1 < . . . < sk} ⊂ N.

(2) Ω[χ∞] ̸= {0, 1}N holds if there exists U ∈ χ such that λ(U, ω0) <∞.

Example 3. Let ω0 = 0110100110010110 . . . ∈ {0, 1}N be the Thue-Morse
word. That is, ω0(n) = 0 if and only if the number of 1 in the 2-adic representa-
tion of n is even. Let T : {0, 1}N → {0, 1}N be the shift and Ω ⊂ {0, 1}N be the
closure of {Tnω0; n ∈ N}. Then, we have Ω[χ∞] = {0, 1}N for any χ ∈ βN \ N.

In fact, let φ(n) = 22n (∀n ∈ N). For any k = 1, 2, . . . and ξ = ξ1ξ2 . . . ξk ∈
{0, 1}k, let Nξ = l22k +

∑k
i=1(1 − ξi)2

2(i−1), where l ∈ {0, 1} is determined
depending on ξ so that ω0(Nξ) = 0. Then, we have ω0(Nξ + φ(i− 1)) = ξi for
any i = 1, 2, . . . , k. Hence,

ξ ∈ Ω[φ(0)⊗ φ(1)⊗ · · · ⊗ φ(k − 1)]
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for any ξ ∈ {0, 1}k. That is,

Ω[φ(0)⊗ φ(1)⊗ · · · ⊗ φ(k − 1)] = {0, 1}k (k = 1, 2, . . .),

which implies that

Ω[φ(0)⊗ φ(1)⊗ φ(2)⊗ · · · ] = {0, 1}N.

Therefore for any χ ∈ βN \N, if {20, 22, 24, · · · } ∈ χ, then Ω[χ∞] = {0, 1}N and
χ is attainable (Theorem 1).
Moreover, we can prove Ω[χ∞] = {0, 1}N for any χ ∈ βN \ N using Theorem

2 ([15]).

4 Super-subwords

The set ∪∞
n=0An of finite words over A is denoted by A∗. The empty word is

denoted by ε, which is the unique element in A0. We also denote A+ = A∗ \{ε}.
For ξ ∈ Ak, k is called the length of ξ which is denoted by |ξ|. We denote
ξ ∈ A∗ with |ξ| = k as ξ1ξ2 · · · ξk, where ξi ∈ A (i = 1, 2, · · · .k). For ξ, η ∈ A∗,
ξη = ξ1 · · · ξkη1 · · · ηl ∈ Ak+l is the concatenation, where ξ = ξ1 · · · ξk ∈ Ak

and η = η1 · · · ηl ∈ Al. Furthermore, ξ−1η = ξ−1
k · · · ξ−1

1 η ∈ A∗ and ξη−1 =
ξη−1

l · · · η−1
1 ∈ A∗ are defined step by step by

a−1η =

{
η2 · · · ηl (if η1 = a)

η1η2 · · · ηl (otherwise)
, ξa−1 =

{
ξ1 · · · ξk−1 (if ξk = a)
ξ1 · · · ξk−1ξk (otherwise)

for all a ∈ A. Thus for any ξ, ζ, η ∈ A∗, ξ−1ζη−1 ∈ A∗ is defined, and for Ξ ⊂ A∗

and ξ, η ∈ A∗, ξ−1Ξη−1 ⊂ A∗ is defined as ξ−1Ξη−1 = {ξ−1ζη−1; ζ ∈ Ξ}.
For any ω ∈ Ω and ξ, η ∈ A∗, with |ξ| = k, ξ is called a super-subword of ω or η

if there exists 1 ≤ n1 < n2 < · · · < nk such that ω(n1−1)ω(n2−1) · · ·ω(nk−1) =
ξ, or nk ≤ |η| and ηn1ηn2 · · · ηnk

= ξ. In these cases, we denote ξ ≪ ω or ξ ≪ η.
For Ξ ⊂ A∗, let Ξmin be the set of minimal elements in Ξ with respect to the
relation ≪, that is

Ξmin = {ξ ∈ Ξ; there does not exists η ∈ Ξ such that η ≪ ξ and η ̸= ξ}.

Let Ξ ⊂ A∗. We denote P(Ξ) the set of ω ∈ AN such that ξ ≪ ω does not
hold for any ξ ∈ Ξ. If Ξ = ∅ (empty set), then P(Ξ) = AN. To the contrary
if ε ∈ Ξ, then P(Ξ) = ∅. In the same way, for any nonempty set Ξ of A∗, we
denote Q(Ξ) the set of ω ∈ AN such that ξ ≪ ω does not hold for some ξ ∈ Ξ.

A set Ξ ⊂ A∗ is said to satisfy (#) if
Condition (#): there does not exist ξ, η ∈ A∗ such that

(ξ−1Ξη−1)min = {a; a ∈ A}.

Theorem 3. [10] For a nonempty closed subset Ω ⊂ AN, Ω is super-stationary
if and only if there exists a finite set Ξ ⊂ A+ satisfying (#) such that Ω = P(Ξ).
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Example 4. Let A = {0, 1} and Ξ = {00, 10}. Then, P(Ξ) = {01∞, 1∞} and
is not super-stationary since P(Ξ)[1⊗ 2⊗ 3 · · · ] = {1∞} ̸= P(Ξ).
Another example is Ξ = {000, 010}. Then,

P(Ξ) = {1nξ1∞; n = 0, 1, 2 · · · , ξ ∈ {ε, 0, 00}}

and is not super-stationary since

P(Ξ)[0⊗ 2⊗ 4 · · · ] = {1nξ1∞; n = 0, 1, 2 · · · , ξ ∈ {ε, 0}} ̸= P(Ξ).

Both cases, the condition (#) does not hold.

Let Ξ ⊂ A∗. It is called non-comparable, if for any ξ, η ∈ Ξ with ξ ̸= η,
neither ξ ≪ η nor η ≪ ξ holds. It is known [10] that any non-comparable set is
finite. We call ζ ∈ A∗ a cover of Ξ if ξ ≪ ζ holds for any ξ ∈ Ξ. A cover ζ of Ξ
is called minimal if there does not exists a cover ζ ′ ̸= ζ of Ξ such that ζ ′ ≪ ζ.
The set of minimal covers of Ξ is called the least common multiple of Ξ and is
denoted by lcm(Ξ). We call ζ ∈ A∗ a core of Ξ if ζ ≪ ξ holds for any ξ ∈ Ξ. A
core ζ of Ξ is called maximal if there does not exists a core ζ ′ ̸= ζ of Ξ such that
ζ ≪ ζ ′. The set of maximal cores of Ξ is called the greatest common divisor of
Ξ and is denoted by gcd(Ξ).

Theorem 4. [9]
Let Ξ ⊂ AN be an arbitrary non-comparable (hence, finite), nonempty set. Then,
(1) gcd(lcm(Ξ)) = Ξ holds, hence P(lcm(Ξ)) = Q(Ξ),
(2) lcm(gcd(Ξ)) = Ξ holds if and only if Ξ = lcm(Θ) holds for some nonempty
finite set Θ ⊂ AN.

5 Pattern recognitions and optimal positions

Let Σ = R2 and take ω ∈ AΣ. It is considered as a picture drawn on R2, where
ω(x) ∈ A is the color put on the point x ∈ R2 and A is considered as the set of
colors.
Here, we restrict to the monochromatic case that A = {0, 1}. Then, the

picture ω ∈ Ω is identified with the subset {x ∈ Σ; ω(x) = 1} ⊂ Σ and the
restriction ω|S the subset ω∩S. Take a finite observation points S ⊂ Σ. We are
interested in maximizing #{ω ∩ S; ω ∈ Ω} among S of the same size. That is,
to maximize the number of distinguished pictures by the observation of a fixed
number of points. This maximum value for #S = k is denoted by p∗Ω(k) and
the function p∗Ω : N → N is called the maximal pattern complexity of Ω.
An infinite subset Θ ⊂ Σ is called an optimal position if for any k ∈ N and

S ⊂ Θ with #S = k, #{ω ∩ S; ω ∈ Ω} = p∗Ω(k) holds. In this case, we
can restrict our observation points in Θ, and the maximal pattern complexity
becomes a uniform complexity (Section 5).

As Ω we take the following closed sets and discuss the maximal pattern com-
plexity together with the existence of an optimal position.

L = the class of straight lines in R2

H = the class of half planes bounded by straight lines in R2

7



D1 = the class of unit discs in R2

D = the class of discs in R2

Q1 = the class of unit squares in R2 with edges parallel to fixed orthogonal directions

Q = the class of squares in R2 with edges parallel to fixed orthogonal directions

R = the class of rectangles in R2 with edges parallel to fixed orthogonal directions

Cn = the class of convex n-polygons in R2, (n = 3, 4, · · · )
C∞ = the class of convex n-polygons with arbitrary n = 3, 4, · · · in R2

Theorem 5. [13]
(1) We have p∗L(k) = 1

2k
2 + 1

2k + 1 (k = 1, 2, · · · ). Moreover, Θ ⊂ R2 with
#Θ = ∞ is an optimal position for L if and only if any 3 points in Θ are not
on a line.
(2) We have p∗D1

(k) = k2 − k + 2 (k = 1, 2, · · · ). Moreover, Θ ⊂ R2 with
#Θ = ∞ is an optimal position for D1 if Θ is a subset of a circle with radius δ
such that 0 < δ < 1.
(3) We have p∗Q1

(k) = k2 − k + 2 (k = 1, 2, · · · ). An optimal position for Q1

does not exist.
(4) We have p∗H(k) = k2−k+2 (k = 1, 2, · · · ). Moreover, Θ ⊂ R2 with #Θ = ∞
is an optimal position for H if Θ is a subset of a circle with radius δ such that
δ > 0.
(5) We have p∗C∞

(k) = 2k (k = 1, 2, · · · ). Moreover, Θ ⊂ R2 with #Θ = ∞
is an optimal position for C∞ if and only if Θ is a subset of the boundary of a
strictly convex set.

Theorem 6. [13]
(1) We have p∗D(k) ≍ k3 as k → ∞ in the sense that

0 < lim inf
k→∞

p∗D(k)/k
3 ≤ lim sup

k→∞
p∗D(k)/k

3 <∞.

(2) We have p∗Q(k) ≍ k3 as k → ∞.
(3) We have p∗R(k) ≍ k4 as k → ∞.
(4) We have k2n ≺ p∗Cn

(k) ≺ k2n+1 as k → ∞ for any n = 3, 4, · · · in the sense
that

lim inf
k→∞

p∗Cn
(k)/k2n > 0 and lim sup

k→∞
p∗Cn

(k)/k2n+1 <∞.

Remark 2. We can also considered the problem of maximizing the number of
partition of Σ generated by the finite sets of patterns in Ω of a fixed size. This
is the dual problem of the pattern recognition problem to attain p∗Ω(k) and is
also discussed in [13].

Remark 3. Some results in the above theorems (e.g. for L, H, Q, R) are well
known in term of VC-dimension([2, 3]. But some exact values and the notions
of duality and optimal position have not been discussed so far.
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6 Uniform sets and uniform complexities

Let Σ be any infinite set. A nonempty closed subset Ω of AΣ is called a uniform
set if for any finite set S ⊂ Σ, #Ω|S depends only on #S, where Ω|S is the
restriction of the mapping Ω : Σ → A to S. In this case, #Ω|S is denote by pΩ(n)
if n = #S, and the function p = pΩ : N → N is called the uniform complexity
of Ω. To study this function, we may assume without loss of generality that
Σ = N. The entropy h(p) and the degree d(p) of the uniform complexity p are
defined as

h(p) = lim
n→∞

log p(n)

n
, d(p) = lim

n→∞

log p(n)− h(p)n

log n
,

the limits being known to exist and are nonnegative integers ([10]).

Remark 4. The above h(p) for any maximal pattern complexity is known to
be nonnegative integer (with Wen Huan and Xiangdong Ye [11]). Therefore,
the result here is just a special case, while it is not known the result on d(n) for
the maximal pattern complexity.

The infinitesimal Ramsey theorem ([4]) leads the first part of (1) of the fol-
lowing Theorem.

Theorem 7. [10])
(1) For any uniform set, there exists a super-stationary set having the same
complexity p, hence, there exists a finite set Ξ ⊂ A+ with the condition (#)
such that p(n) = pP(Ξ)(n) (∀n ∈ N).
(2) For any uniform complexity p over A with #A = d, either p(n) = dn (∀n ∈
N) or there exists a positive integer k ≤ d − 1 and polynomials r1, · · · , rk of n

with rational coefficients with rk ̸≡ 0 such that p(n) =
∑k

i=1 i
nri(n) holds for

any sufficiently large n ∈ N. The former case, h(p) = log d and deg(p) = 0,
while the latter case, h(p) = log k and d(p) = deg rk.

Theorem 8. [9]
For any uniform complexity p over A with #A = 2 other than p(n) = 2n (∀n ∈
N), there exists a nonempty finite set Ξ ⊂ A+ such that p(n) = pQ(Ξ)(n) (∀n ∈
N), hence p(n) = pP(lcm(Ξ))(n).

Example 5. [8] Let us list up below all the uniform complexities with entropy
0 and degree ≤ 1 in the case A = {0, 1}. If Ξ contains ξ with |ξ| ≥ 3, then
pQ(Ξ)(k) is a polynomial of degree ≥ 2 since

pQ(Ξ)(k) ≥ pQ({ξ})(k) =

|ξ|−1∑
i=0

(
k

i

)
.

Therefore by Theorem 5, the uniform complexities with degree ≤ 1 are real-
ized by the unions of P({0}),P({1}),P({00}),P({01}),P({10}),P({11}). The
above list contains all non-comparable unions of these 0-1-blocks up to the sym-
metry of exchanging 0 and 1. The 3rd column is complexity function pΩ(k)
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with Ω = Q(Ξ) = P(lcm(Ξ)), and the 4th column is the minimum k0 such that
these formulas hold for k ≥ k0. Here, the language trees of Q({11, 10}) and
Q({11, 01}) naving the same uniform complexity are not isomorphic (Figure 1),
while those of Q({11, 01}) and Q({10, 01}) are isomorphic.

Ξ lcm(Ξ) pΩ(k) k0

{1} {1} 1 0
{1,0} {10,01} 2 1
{11} {11} k + 1 0
{10} {10}
{11,0} {110,101,011} k + 2 2
{11,10} {110,101} 2k 1
{11,01} {101,011}
{10,01} {101,010}
{11,00} {1100,1010,1001,0110,0101,0011} 2k + 2 3

{11,10,01} {101,0101,0110} 3k − 2 2
{11,10,00} {1100,1010,1001,0110,0101} 3k − 1 3

{11,10,01,00} {1010,1001,0110,0101} 4k − 4 2
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Figure 1: Q({11, 10}) (left), Q({11, 01}) (right)

7 Infinitesimal geometry at infinities

Let X,Y be infinite sets and F : X → Y be a mapping. For χ ∈ βX, define
F (χ) ∈ βY by

F (χ) = {U ⊂ Y ; F−1U ∈ χ}.

Let X be a compact metric space with metric ρX and #X = ∞. Let χ ∈
βX \X. Then χ determine a point in X denoted by limχ so that

x = limχ if and only if {y ∈ X; ρX(x, y) < ϵ} ∈ χ for any ϵ > 0.
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Moreover, let X be a compact Riemanian manifold and χ ∈ βX \X. LetW be a
small neighborhood of limχ belonging to χ. For distinct points x1, x2 ∈W , let
φ(x1, x2) be the unit vector ⃗x2x1/|| ⃗x2x1|| with respect to a local ortho-normal
coordinate. Then, v := limφ(χ2) is a unit tangent vector of X at limχ which
is called the tangent vector of χ. Actually, it satisfied that

{(x1, x2) ∈ X ×X; || v − ⃗x2x1/|| ⃗x2x1|| || < ϵ} ∈ χ2

for any ϵ > 0. Furthermore, in the case dimX = 2, we define the radius of χ as
limψ(χ3), where ψ(x1, x2, x3) with distinct x1, x2, x3 ∈ W is the radius of the
circle passing these points in this order. The radius of χ is denoted by Rad(χ).
In this way, we can define local geometric quantities at χ ∈ βX \X.

Example 6. [15] Let α = (α1, α2) ∈ R2 be an irrational vector, that is,
1, α1, α2 are linearly independent over the rational field. Let x 7→ x+ α be the
rotation of (R/Z)2 by α. For 0 < δ < 1/4, let D be the closed disc with radius
δ and center at the origin. For x ∈ (R/Z)2, define ω0 ∈ {0, 1}N by ωx(n) = 1 if
and only if nα ∈ D (mod 1). Let Ω ⊂ {0, 1}N be the closure of {Tnω0; n ∈ N}.
Then, for any χ ∈ β(R/Z)2 \ (R/Z)2, we have

Ω[χ∞] =

{
P(101) Rad(χ) ≥ δ
P(0101, 1010) Rad(χ) < δ

.

These remote moves are attainable.
In the picture below, the disc surrounded by the central circle is D. The right

hand side shows the case Rad(χ) < δ, where subword 101 is possible under the
condition that both before and after it should be 1. The left hand side shows
the case Rad(χ) > δ, where 101 is impossible.

x1

x2

x3

x1

x2

x3
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