Expansions by reciprocals of integers, rational approximations and absolutely normal sequences

Teturo KAMAE*

1 Introduction

Any real number $x \in [0,1)$ can be expressed as a finite or infinite sum:

$$x = \frac{1}{n_0} + \frac{1}{n_1} + \frac{1}{n_2} + \cdots, (1.1)$$

where
$$2 \le n_0 < n_1 < n_2 < \cdots$$
 are integers, (1.2)

which is called an *expansion by reciprocals of integers* of x. This expansion is called *finite* or *infinite* according to whether the right hand is a finite sum or not. The empty sum means 0.

On the space of finite or infinite sequences of integers $n_0 n_1 n_2 \cdots$ satisfying (1.2), we define the *lexicographic order* $<_{lex}$ as follows:

$$n_0 n_1 n_2 \cdots <_{lex} n'_0 n'_1 n'_2 \cdots$$
 (1.3)

if and only if there exists $k=0,1,\cdots$ such that $n_i=n_i'$ for any $i=0,1,\cdots,k-1$ and that either $n_k< n_k'$ or n_k' is not defined while n_k is defined. Note that n_k' is not defined is equivalent to say that $n_k'=\infty$. In this sence the empty sequence is largest.

Various expansions of this type are known, but in this paper, we specially consider the following 2 of them.

Greedy expansion (GE, for short), that is, among the expansion by reciprocals of integers (1.1) of x, $n_0n_1n_2\cdots$ is lexicographically smallest.

Lazy expansion (LE, for short), that is, (1.1) is defined by the following algorithm:

Let $f:[0,1) \to [0,1)$ be

$$f(x) = \begin{cases} \left(\left\lceil \frac{1}{x} \right\rceil - 1 \right) \left(x - \frac{1}{\left\lceil \frac{1}{x} \right\rceil} \right) & (x > 0) \\ undefined & (x = 0) \end{cases}, \tag{1.4}$$

^{*}Advanced Mathematical Institute, Osaka Metropolitan University, 558-8585 Japan (kamae@apost.plala.or.jp)

and define $a_k : [0,1) \to \{2,3,\cdots\} \ (k=0,1,2,\cdots)$ by

$$a_k(x) = \lceil \frac{1}{f^k(x)} \rceil. \tag{1.5}$$

Then, the finite or infinite sequence (1.2) is given by

$$n_0 = a_0(x), \ n_1 = (a_0(x) - 1)a_1(x), \ n_2 = (a_0(x) - 1)(a_1(x) - 1)a_2(x), \ \cdots$$
(1.6)

The sequence $a_0(x), a_1(x), a_2(x), \cdots$ is called the *partial lazy quotient* of x. GE also has an expression by a piecewise linear function. That is, define a piecewise linear function g as follows:

$$g(x) = \begin{cases} x - \frac{1}{\lceil \frac{1}{x} \rceil} & (x > 0) \\ undefined & (x = 0) \end{cases},$$
 (1.7)

and define

$$A_k(x) = \lceil \frac{1}{g^k(x)} \rceil \ (k = 0, 1, 2, \cdots).$$
 (1.8)

This gives the GE of $x \in [0,1)$ with $n_k = A_k(x)$ $(k = 0,1,2,\cdots)$ in (1.1). The sequence $A_0(x), A_1(x), A_2(x), \cdots$ is called the *greedy quotient*.

GE and TE are well known as *Sylvester expansion* ([2], for example) and *modified Engel expansion* ([3], for example), but here just because of the comparison, we call them GE and LE.

We give 4 examples of finite GE and LE. In the first example, GE and LE coincide but in the other 3, they differ.

$$\frac{23}{30} = \frac{1}{2} + \frac{1}{4} + \frac{1}{60} = \frac{1}{2} + \frac{1}{4} + \frac{1}{60}$$

$$\frac{59}{120} = \frac{1}{3} + \frac{1}{7} + \frac{1}{65} + \frac{1}{10920} = \frac{1}{3} + \frac{1}{8} + \frac{1}{30}$$

$$\frac{19}{39} = \frac{1}{3} + \frac{1}{7} + \frac{1}{91} = \frac{1}{3} + \frac{1}{8} + \frac{1}{36} + \frac{1}{960} + \frac{1}{38130} + \frac{1}{2083200}$$

$$+ \frac{1}{304854000} + \frac{1}{45421200000} + \frac{1}{4208418013800000}$$

$$e - 2 = \frac{1}{2} + \frac{1}{5} + \frac{1}{55} + \frac{1}{9999} + \frac{1}{3620211523} + \frac{1}{25838201785967533906}$$

$$+ \frac{1}{3408847366605453091140558218322023440765} + \cdots$$

$$= \frac{1}{2} + \frac{1}{5} + \frac{1}{56} + \frac{1}{2392} + \frac{1}{152100} + \frac{1}{19768320} + \frac{1}{5179299840} + \cdots,$$

where the Taylor expansion

$$e-2=\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\cdots+\frac{1}{n!}+\cdots$$

is lexicographically larger than both of GE and LE.

The LE of 2/5:

$$\frac{2}{5} = \frac{1}{3} + \frac{1}{16} + \frac{1}{252} + \frac{1}{5236} + \frac{1}{134946} + \frac{1}{59386236} + \frac{1}{352811938752} + \frac{1}{2157082653267360} + \frac{1}{244044771900683906880} + \cdots$$

seems to be infinite, but we cannot prove (see Section 5).

The following theorems are well known, but we give proofs of some of them by the reasons of self-containedness and difficulty to get the paper.

Theorem 1. (A. Rényi [3])

- (1) A finite or infinite sequence of integers b_0, b_1, b_2, \cdots is the partial lazy quotient of some $x \in [0,1)$ if and only if
- (1-1) $b_0 \ge 2$, $b_{k+1} \ge b_k + 1$ $(k = 0, 1, 2, \cdots)$, and
- (1-2) either it is finite or the strict inequality holds infinitely often in (1-1).
- (2) For any $x, y \in [0, 1)$, y < x if and only if

$$a_0(x)a_1(x)a_2(x)\cdots <_{lex} a_0(y)a_1(y)a_2(y)\cdots$$

(3) The partial lazy quotient $\{a_k = a_k(x); k = 0, 1, 2, \dots\}$ define a Markov process under the Lebesgue measure on $x \in [0, 1)$ such that

$$\mathbb{P}(a_0 = n) = \frac{1}{(n-1)n} \ and \tag{1.9}$$

$$\mathbb{P}(a_{k+1} = n \mid a_k = m) = \begin{cases} \frac{m}{(n-1)n} & n \ge m+1\\ 0 & otherwise \end{cases}$$
 (1.10)

for any $m = k + 2, k + 3, \dots (k = 0, 1, 2, \dots)$.

Theorem 2. (A. Rényi [3])

- (1) Let $X_n = \mathbf{1}_{n \in \{a_0, a_1, a_2, \dots\}}$ $(n = 2, 3, \dots)$. Then, X_2, X_3, \dots are independent random variables such that $\mathbb{E}(X_n) = \mathbb{P}(X_n = 1) = 1/n$ $(n = 2, 3, \dots)$.
- (2) Conversely, the distribution of the random variables a_0, a_1, a_2, \cdots is characterized as above. That is, if X_2, X_3, \cdots are independent random variables such that $\mathbb{P}(X_n = 1) = 1/n \ (n = 2, 3, \cdots)$ and let $a'_0 < a'_1 < a'_2 < \cdots$ be such that $\{a'_0, a'_1, a'_2, \cdots\} = \{i; X_i = 1\}$, then

$$(a'_0, a'_1, a'_2, \cdots) \sim_{\text{law}} (a_0, a_1, a_2, \cdots).$$

(3) For almost all $x \in [0,1)$ with respect to the Lebesgue measure, it holds that

$$\lim_{n \to \infty} \frac{\#\{i; \ a_i \le n\}}{\log n} = 1.$$

Theorem 3. (P. Erdős, A. Rényi and P. Szűsz [2])

(1) The greedy quotient $\{A_k = A_k(x); k = 0, 1, 2, \cdots\}$ define a Markov

process under the Lebesgue measure on $x \in [0,1)$ such that

$$\mathbb{P}(A_0 = n) = \frac{1}{(n-1)n}, \text{ and}$$
 (1.11)

$$\mathbb{P}(A_{k+1} = n \mid A_k = m) = \begin{cases} \frac{(m-1)m}{(n-1)n} & n \ge D(m) \\ 0 & otherwise \end{cases}$$
 (1.12)

for any $k = 0, 1, 2, \cdots$ and $m = D^k(2), D^k(2) + 1, D^k(2) + 2, \cdots$, where D(m) = (m-1)m+1 $(m = 2, 3, \cdots)$ and $D^2(m) = D(D(m)) = D((m-1)m+1) = (m-1)m((m-1)m+1) + 1, \cdots$.

- (2) For any rational number $x \in [0,1)$, the GE of x is finite. The length of the expansion is at most p, where x = p/q is the irreducible fraction.
- (3) For almost all $x \in [0,1)$ with respect to the Lebesgue measure,

$$\lim_{k \to \infty} \frac{\log A_k(x)}{2^k}$$

exists. This value may depends on $x \in [0, 1)$.

Definition 1. An infinite sequence of integers $2 \le b_0 < b_1 < b_2 < \cdots$ is said to be *absolutely normal* if for any $r = 2, 3, \cdots$, the sequence

$$b_0b_1b_2\cdots\pmod{r}$$

is a r-adic normal number.

Theorem 4. Almost all $A_0(x)A_1(x)A_2(x)$, \cdots and $a_0(x)a_1(x)a_2(x)$ \cdots with respect to the Lebesgue measure on $x \in [0,1)$ are absolutely normal.

2 Proof of Theorem 1

Lemma 1. Let $x \in [0,1)$ and $b_0 = a_0(x), b_1 = a_1(x), b_2 = a_2(x), \cdots$. (1) It holds $2 \le b_0 < b_1 < b_2 < \cdots$ and that

$$1 \le b_0 - 1 < \frac{1}{x} \le b_0 \le b_1 - 1 < \frac{1}{f(x)} \le b_1 \le \cdots$$
$$\le b_{k-1} \le b_k - 1 < \frac{1}{f^k(x)} \le b_k \le \cdots$$

(2) For any $k = 1, 2, \dots$, we have

$$x = \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)\dots(b_{k-2} - 1)b_{k-1}} + \frac{f^k(x)}{(b_0 - 1)\dots(b_{k-2} - 1)(b_{k-1} - 1)}$$
$$= \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)\dots(b_{k-2} - 1)b_{k-1}} + \dots,$$

hence (1.6) implies (1.1).

(3) For $y \in [0,1)$, $a_0(y) = b_0$, $a_1(y) = b_1$, \cdots , $a_k(y) = b_k$ holds if and only if

$$\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)\cdots(b_{k-2} - 1)b_{k-1}} + \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)b_k} \\
\leq y < \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)\cdots(b_{k-2} - 1)b_{k-1}} \\
+ \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)(b_k - 1)}.$$

Proof (1) If $x \in [0,1)$, then as long as $b_0 = a_0(x), b_1 = a_1(x), b_2 = a_2(x), \cdots$ are defined, it holds that

$$b_0 = \lceil \frac{1}{x} \rceil \ge 2 \text{ and } b_0 - 1 < \frac{1}{x} \le b_0.$$
 (2.1)

Hence,

$$0 \le x - \frac{1}{b_0} < \frac{1}{b_0 - 1} - \frac{1}{b_0} = \frac{1}{(b_0 - 1)b_0}.$$

Therefore,

$$0 \le f(x) = (b_0 - 1)(x - \frac{1}{b_0}) < \frac{1}{b_0},$$

so that $b_0 < \frac{1}{f(x)}$ follows. Also, replacing x in (2.1) by f(x), we have

$$b_1 - 1 = a_0(f(x)) - 1 < \frac{1}{f(x)} \le a_0(f(x)) = b_1.$$

From these inequalities, it follows that $b_0 < b_1$, and that

$$b_0 \le b_1 - 1 < \frac{1}{f(x)} \le b_1.$$

Replacing x by f(x) in the above, we have

$$b_1 \le b_2 - 1 < \frac{1}{f^2(x)} \le b_2.$$

Repeating this, we have $2 \le b_0 < b_1 < b_2 < \cdots$ and

$$1 \le b_0 - 1 < \frac{1}{x} \le b_0 \le b_1 - 1 < \frac{1}{f(x)} \le b_1 \le \dots$$
$$\le b_{k-1} \le b_k - 1 < \frac{1}{f^k(x)} \le b_k \le \dots$$

(2) Since
$$b_0 = a_0(x) = \lceil 1/x \rceil$$
 and $f(x) = (b_0 - 1)(x - \frac{1}{b_0}),$

$$x = \frac{1}{b_0} + \frac{f(x)}{b_0 - 1}$$
(2.2)

holds. Since $f(x) = \frac{1}{b_1} + \frac{f^2(x)}{b_1 - 1}$, we have

$$x = \frac{1}{b_0} + \frac{f(x)}{b_0 - 1} = \frac{1}{b_0} + \frac{\frac{1}{b_1} + \frac{f^2(x)}{b_1 - 1}}{b_0 - 1} = \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \frac{f^2(x)}{(b_0 - 1)(b_1 - 1)}.$$

Repeating this, we have the first half of the equation in (2). The rest follows since the last term in the 2nd side of the equation is either 0 or tends to 0 as $k \to \infty$.

(3) Assume that $y \in [0,1)$ satisfies that $a_0(y) = b_0, a_1(y) = b_1, \dots, a_k(y) = b_k$. Then by (1), $b_k - 1 < \frac{1}{f^k(y)} \le b_k$. Hence, by (2) with k-1 in place of k, we have

$$\begin{split} \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)\cdots(b_{k-2} - 1)b_{k-1}} + \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)b_k} \\ & \leq y < \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)\cdots(b_{k-2} - 1)b_{k-1}} \\ & \qquad \qquad + \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)(b_k - 1)}. \end{split}$$

Moreover, $f^k(y)$ is linear in this interval with the image equal to $[\frac{1}{b_k}, \frac{1}{b_k-1})$. Therefore, the above interval coincides the set of y with $a_0(y) = b_0, a_1(y) = b_1, \dots, a_k(y) = b_k$, which proves (3).

Lemma 2. Let $2 \le b_0 < b_1 < b_2 < \cdots$ be an arbitrary infinite sequence of integers. Then, we have

$$\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \frac{1}{(b_0 - 1)(b_1 - 1)b_2} + \frac{1}{(b_0 - 1)(b_1 - 1)(b_2 - 1)b_3} + \dots \le \frac{1}{b_0 - 1}$$

The equality holds if and only if $b_k = b_0 + k$ holds for any $k = 1, 2, \cdots$.

Proof Note that

$$\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \frac{1}{(b_0 - 1)(b_1 - 1)b_2} + \frac{1}{(b_0 - 1)(b_1 - 1)(b_2 - 1)b_3} + \cdots$$

converges. Assume that $b_k = b_0 + k$ holds for any $k = 1, 2, \dots$. Put $B = b_0$. Then, we have

$$\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \frac{1}{(b_0 - 1)(b_1 - 1)b_2} + \frac{1}{(b_0 - 1)(b_1 - 1)(b_2 - 1)b_3} + \cdots
= \frac{1}{B} + \frac{1}{(B - 1)(B + 1)} + \frac{1}{(B - 1)B(B + 2)} + \frac{1}{(B - 1)B(B + 1)(B + 3)} + \cdots
= \frac{1}{B - 1} - \frac{1}{(B - 1)B} + \frac{1}{(B - 1)(B + 1)} + \frac{1}{(B - 1)B(B + 1)(B + 3)} + \cdots
= \frac{1}{B - 1} - \frac{1}{(B - 1)B(B + 1)} + \frac{1}{(B - 1)B(B + 2)} + \frac{1}{(B - 1)B(B + 1)(B + 3)} + \cdots$$

$$= \frac{1}{B-1} - \frac{1}{(B-1)B(B+1)(B+2)} + \frac{1}{(B-1)B(B+1)(B+3)} + \dots = \dots$$

$$= \frac{1}{B-1} - \frac{1}{(B-1)B(B+1)\dots(B+k)} + \frac{1}{(B-1)B(B+1)\dots(B+k+1)} + \dots$$

$$= \frac{1}{B-1}.$$

If $b_k = b_0 + k$ fails at $k = k_0$ for the first place. Then,

$$\frac{1}{(b_0 - 1)(b_1 - 1)\cdots(b_{k-1} - 1)b_k} = \frac{1}{(B - 1)B(B + 1)\cdots(B + k - 2)(B + k)}$$

holds for $k = 0, 1, \dots, k_0 - 1$, but

$$\frac{1}{(b_0-1)(b_1-1)\cdots(b_{k-1}-1)b_k} < \frac{1}{(B-1)B(B+1)\cdots(B+k-2)(B+k)}$$

holds for $k = k_0, k_0 + 1, \cdots$. Thus, we have

$$\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \frac{1}{(b_0 - 1)(b_1 - 1)b_2} + \frac{1}{(b_0 - 1)(b_1 - 1)(b_2 - 1)b_3} + \dots < \frac{1}{b_0 - 1}.$$

Proof of Theorem 1:

Let $2 \le b_0 < b_1 < b_2 < \cdots$ be an arbitrary sequence of integers such that either it is finite or there does not exist k such that $b_{k+n} = b_k + n$ for any $n = 1, 2, \cdots$. Define

$$x = \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \frac{1}{(b_0 - 1)(b_1 - 1)b_2} + \frac{1}{(b_0 - 1)(b_1 - 1)(b_2 - 1)b_3} + \cdots$$

Then by Lemma 2, $\frac{1}{b_0} \le x < \frac{1}{b_0-1}$ holds. Hence, $b_0-1 < \frac{1}{x} \le b_0$ and $a_0(x) = b_0$. It also follows that

$$f(x) = (b_0 - 1)(y - \frac{1}{b_0}) = \frac{1}{b_1} + \frac{1}{(b_1 - 1)b_2} + \frac{1}{(b_1 - 1)(b_2 - 1)b_3} + \cdots$$

Repeating this, we have $b_1 = \lceil 1/f(x) \rceil, b_2 = \lceil 1/f^2(x) \rceil, \cdots$, which proves the "if" part of (1).

Suppose that an infinite sequence $2 \leq b_0 < b_1 < b_2 < \cdots$ of integers satisfies that there exists k such that $b_{k+n} = b_k + n$ for any $n = 1, 2, \cdots$ and that it is the partial lazy quotient of some $x \in [0,1)$. Take the smallest k as this. Then, either k = 0 or k > 0 and $b_{k-1} \leq b_k - 2$. Let n_0, n_1, n_2, \cdots be defined by (1.6) with these b_0, b_1, b_2, \cdots instead of $a_0(x), a_1(x), a_2(x), \cdots$. Then, putting

$$C = (b_0 - 1)(b_1 - 1) \cdots (b_{k-1} - 1)$$
 and $K = b_k$,

we have

$$\frac{1}{n_k} + \frac{1}{n_{k+1}} + \frac{1}{n_{k+2}} + \cdots$$

$$= \frac{1}{C} \left(\frac{1}{K} + \frac{1}{(K-1)(K+1)} + \frac{1}{(K-1)K(K+2)} + \cdots \right)$$

$$= \frac{1}{C} \left(\frac{1}{K-1} - \frac{1}{(K-1)K} + \frac{1}{(K-1)(K+1)} + \frac{1}{(K-1)K(K+2)} + \cdots \right)$$

$$= \frac{1}{C} \left(\frac{1}{K-1} - \frac{1}{(K-1)K(K+1)} + \frac{1}{(K-1)K(K+2)} + \cdots \right)$$

$$= \frac{1}{C} \left(\frac{1}{K-1} - \frac{1}{(K-1)K(K+1)(K+2)} + \cdots \right) = \cdots = \frac{1}{C} \frac{1}{K-1}$$

$$= \frac{1}{(b_0-1)(b_1-1)\cdots(b_{k-1}-1)(b_k-1)}$$

Hence, we have

$$x = \frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \dots + \frac{1}{(b_0 - 1)(b_1 - 1)\dots(b_k - 1)}$$

with $2 \le b_0 < b_1 < \dots < b_{k-1} < b_k - 1$. Therefore, x has the partial lazy quotient $b_0, b_1, \dots, b_{k-1}, b_k - 1$, which contradicts with the assumption that the partial lazy quotient of x is $b_0, b_1, \dots, b_{k-1}, b_k, b_{k+1}, \dots$.

- (2) follows from Lemma 2 and (1).
- (3) It follows from Lemma 1 that for any integers $2 \le b_0 < b_1 < \cdots < b_{k+1}$,

$$\begin{split} \mathbb{P}(a_0 = b_0, a_1 = b_1, \cdots, a_k = b_k) \\ &= \left(\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \cdots + \frac{1}{(b_0 - 1)\cdots(b_{k-2} - 1)b_{k-1}} \right. \\ &\qquad \qquad + \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)(b_k - 1)} \right) \\ &- \left(\frac{1}{b_0} + \frac{1}{(b_0 - 1)b_1} + \cdots + \frac{1}{(b_0 - 1)\cdots(b_{k-2} - 1)b_{k-1}} \right. \\ &\qquad \qquad \qquad + \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)b_k} \right) \\ &= \frac{1}{(b_0 - 1)\cdots(b_{k-1} - 1)(b_k - 1)b_k}. \end{split}$$

In the same way, we have

$$\mathbb{P}(a_0 = b_0, a_1 = b_1, \dots, a_k = b_k, a_{k+1} = b_{k+1})$$

$$= \frac{1}{(b_0 - 1) \cdots (b_{k-1} - 1)(b_k - 1)(b_{k+1} - 1)b_{k+1}}.$$

Hence, we have

$$\mathbb{P}(a_0 = b_0) = \frac{1}{(b_0 - 1)b_0}$$

$$\mathbb{P}(a_{k+1} = b_{k+1} \mid a_0 = b_0, a_1 = b_1, \dots, a_k = b_k) = \frac{b_k}{(b_{k+1} - 1)b_{k+1}},$$

which proves (3).

3 Proof of Theorem 2

(1) We first prove that

$$\mathbb{E}(X_n) = 1/n \tag{3.1}$$

by the induction on n. Since

$$\mathbb{E}(X_2) = \mathbb{P}(a_0 = 2) = \frac{1}{2},$$

(3.1) holds for n = 2. Let $n \ge 3$ and assume that (3.1) holds up to n - 1. Then, using the first half of Theorem 2 and the introduction hypothesis, we have

$$\mathbb{E}(X_n) = \mathbb{P}(n \in \{a_k; \ k = 0, 1, 2, \dots\})$$
$$= \mathbb{P}(a_0 = n) + \sum_{m=2}^{n-1} \sum_{k=1}^{n-2} \mathbb{P}(a_k = n, \ a_{k-1} = m)$$

$$= \frac{1}{(n-1)n} + \sum_{m=2}^{n-1} \sum_{k=1}^{n-2} \frac{m}{(n-1)n} \mathbb{P}(a_{k-1} = m)$$

$$= \frac{1}{(n-1)n} + \sum_{m=2}^{n-1} \frac{m}{(n-1)n} \mathbb{P}(m \in \{a_0, a_1, a_2, \dots\})$$

$$= \frac{1}{(n-1)n} + \sum_{m=2}^{n-1} \frac{m}{(n-1)n} \frac{1}{m} = \frac{1}{n},$$

which proves (3.1).

Now let us prove the independence of X_2, X_3, \cdots . It is sufficient to prove that for any $n \geq 1$ and $2 \leq i_1 < i_2 < \cdots < i_n$,

$$\mathbb{P}(X_{i_1} X_{i_2} \cdots X_{i_n} = 1) = \frac{1}{i_1 i_2 \cdots i_n}.$$
 (3.2)

(3.2) holds for n = 1. Assume that $n \ge 2$ and (3.2) holds for n - 1. Since

$$\mathbb{P}(X_{i_1} X_{i_2} \cdots X_{i_n} = 1)
= \mathbb{P}(X_{i_1} X_{i_2} \cdots X_{i_{n-1}} = 1) \mathbb{P}(X_{i_n} = 1 | X_{i_1} X_{i_2} \cdots X_{i_{n-1}} = 1)
= \mathbb{P}(X_{i_1} X_{i_2} \cdots X_{i_{n-1}} = 1) \mathbb{P}(X_{i_n} = 1 | X_{i_{n-1}} = 1)
= \frac{1}{i_1 i_2 \cdots i_{n-1}} \mathbb{P}(X_{i_n} = 1 | X_{i_{n-1}} = 1)$$

by the Markov property of $(a_n; n = 2, 3, \dots)$, it is sufficient to prove that for any $2 \le m < n$,

$$\mathbb{P}(X_n = 1 | X_m = 1) = \frac{1}{n}.$$
(3.3)

We use the induction on n-m. If n-m=1, then (3.3) follows from (1.10). Assume that $n-m \geq 2$ and (4.3) holds for any smaller n-m. Let E be the event that $X_{m+1} = X_{m+2} = \cdots = X_{n-1} = 0$. Then by (1.10), we have

$$\mathbb{P}(X_n = 1 | X_m = 1) = \mathbb{P}(E \land X_n = 1 | X_m = 1) + \mathbb{P}(E^c \land X_n = 1 | X_m = 1)$$

$$= \frac{m}{(n-1)n} + \mathbb{P}(X_n = 1 | E^c \land X_m = 1) \mathbb{P}(E^c | X_m = 1)$$

$$= \frac{m}{(n-1)n} + \frac{1}{n} \sum_{k=m+1}^{n-1} \frac{m}{(k-1)k} = \frac{m}{(n-1)n} + \frac{m}{n} \left(\frac{1}{m} - \frac{1}{n-1} \right) = \frac{1}{n},$$

which completes the proof of (2).

- (2) is clear since the distribution of $(a'_2, a'_3, a'_4, \cdots)$ is uniquely determined.
- (3) Let

$$Y_n = \frac{X_2 + X_3 + \dots + X_n}{\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{n}}$$
 $(n = 2, 3, \dots).$

Then, since

$$\mathbb{E}(X_i) = \frac{1}{i} \text{ and } \mathbb{V}(X_i) = \frac{1}{i} \left(1 - \frac{1}{i} \right) \le \frac{1}{i} \ (i = 2, 3, \dots)$$

and X_2, X_3, \cdots are independent, it holds that

$$\mathbb{E}(Y_n) = 1$$
 and $\mathbb{V}(Y_n) \le \frac{1}{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} = O((\log n)^{-1}).$

Since

$$\sum_{k=1}^\infty \mathbb{V}(Y_{2^{k^2}}) = O(\sum_{k=1}^\infty k^{-2}) < \infty,$$

by the usual method using Chebyshev's inequality and Borel -Canteli Lemma, we have

$$\lim_{k\to\infty}Y_{2^{k^2}}=1$$

with probability 1. Let $2^{k^2} \le n < 2^{(k+1)^2}$. Then since

$$\frac{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{k^2}}}{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{(k+1)^2}}} Y_{2^{k^2}} \le Y_n < \frac{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{(k+1)^2}}}{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{k^2}}} Y_{2^{(k+1)^2}},$$

we have $\lim_{n\to\infty} Y_n = 1$ with probability 1. Thus, (4) follows.

4 Proof of Theorem 4

Lemma 3. For any $k = 0, 1, 2, \cdots$ and $b \ge k + 2$, it holds that

$$\mathbb{P}(a_{k+1} > 2b \mid a_k = b) = \frac{1}{2}.$$

Hence, the random variables $\mathbf{1}_{a_{k+1}/a_k>2}$ $(k=0,1,2,\cdots)$ are independent and identically distributed with distribution (1/2,1/2).

Proof By Theorem 2,

$$\mathbb{P}(a_{k+1} \le 2b \mid a_k = b) = \sum_{\xi = b+1}^{2b} \mathbb{P}(a_{k+1} = \xi \mid a_k = b)$$

$$= b \left(\frac{1}{b(b+1)} + \frac{1}{(b+1)(b+2)} + \dots + \frac{1}{(2b-1)2b} \right)$$

$$= b \left(\frac{1}{b} - \frac{1}{2b} \right) = \frac{1}{2}.$$

Hence, $\mathbb{P}(\mathbf{1}_{a_{k+1}/a_k>2} \mid a_k = b) = \frac{1}{2}$. Since this probability is indifferent to b and the sequence of random variables a_0, a_1, a_2, \cdots is Markov, the random variables $\{\mathbf{1}_{a_{k+1}/a_k>2}, \ k=0,1,2,\cdots\}$ are i.i.d. with distribution (1/2,1/2). \square

Lemma 4. It holds with probability 1 that for any $\epsilon > 0$, $a_k > 2^{(1-\epsilon)k/2}$ holds for any sufficiently large k.

Proof Let $\epsilon > 0$ be given. By the law of large numbers (W.Feller [5]) and Lemma 3,

$$\sum_{i=0}^{k-1} \mathbf{1}_{a_{i+1}/a_i > 2} > (1 - \epsilon)k/2, \text{ and hence } a_k > 2^{(1-\epsilon)k/2}$$

holds for any sufficiently large k with probability 1.

Lemma 5. For any $k = 0, 1, 2, \cdots$ and $c_1c_2\cdots c_h \in \{0, 1, \cdots, r-1\}^h$, it holds that

$$\mathbb{P}(a_{k+1}a_{k+2}\cdots a_{k+h} \equiv c_1c_2\cdots c_h \pmod{r} \mid a_k = b)$$

$$= \sum_{\substack{b_1,\dots,b_h\\b_1\equiv c_1,\dots,b_k\equiv c_h \pmod{r}}} \prod_{i=1}^h \left(\frac{b_{i-1}}{b_i-1} - \frac{b_{i-1}}{b_i}\right) \quad (b_0 := b)$$

$$= \sum_{\substack{b_1=b+1\\b_1\equiv c_1 \pmod{r}}}^{\infty} \left(\frac{b}{b_1-1} - \frac{b}{b_1}\right) \sum_{\substack{b_2=b_1+1\\b_2\equiv c_2 \pmod{r}}}^{\infty} \left(\frac{b_1}{b_2-1} - \frac{b_1}{b_2}\right)$$

$$\cdots \sum_{\substack{b_h=b_{h-1}+1\\b_h\equiv c_h \pmod{r}}}^{\infty} \left(\frac{b_{h-1}}{b_h-1} - \frac{b_{h-1}}{b_h}\right).$$

Proof By Theorem 2, we have

$$\mathbb{P}(a_{k+1}a_{k+2}\cdots a_{k+h} = b_1b_2\cdots b_h \mid a_k = b)
= \mathbb{P}(a_{k+1} = b_1 \mid a_k = b)\mathbb{P}(a_{k+2} = b_2 \mid a_{k+1} = b_1)\cdots \mathbb{P}(a_{k+h} = b_h \mid a_{k+h-1} = b_{h-1})
= \frac{b}{(b_1 - 1)b_1} \frac{b_1}{(b_2 - 1)b_2} \cdots \frac{b_{h-1}}{(b_h - 1)b_h} = \prod_{i=1}^h \left(\frac{b_{i-1}}{b_i - 1} - \frac{b_{i-1}}{b_i}\right),$$

which implies our Lemma.

Lemma 6. For any $k = 0, 1, 2, \dots$ and $c_1 c_2 \dots c_h \in \{0, 1, \dots, r-1\}^h$,

$$|\mathbb{P}(a_{k+1}a_{k+2}\cdots a_{k+h} \equiv c_1c_2\cdots c_h \pmod{r} \mid a_k = b) - \frac{1}{r^h}| \le \frac{h}{b+1}$$

Proof Note that for $i = 1, 2, \dots, h$, it holds that

$$\sum_{b_i=b_{i-1}+1}^{\infty} \left(\frac{b_{i-1}}{b_i - 1} - \frac{b_{i-1}}{b_i} \right) = 1 \tag{4.1}$$

and that the summand is decreasing in b_i , where $b_0 = b$. Therefore for any $c, d \in \{0, 1, \dots, r-1\}$, it holds that

$$\left| \sum_{\substack{b_i = b_{i-1} + 1 \\ b_i \equiv c \pmod{r}}}^{\infty} \left(\frac{b_{i-1}}{b_i - 1} - \frac{b_{i-1}}{b_i} \right) - \sum_{\substack{b_i = b_{i-1} + 1 \\ b_i \equiv d \pmod{r}}}^{\infty} \left(\frac{b_{i-1}}{b_i - 1} - \frac{b_{i-1}}{b_i} \right) \right|$$

$$\leq \text{the first term of } (4.1) = \frac{1}{b_{i-1} + 1} \leq \frac{1}{b+1}.$$

It follows that

$$\left| \sum_{\substack{b_i = b_{i-1} + 1 \\ b_i \equiv c \pmod{r}}}^{\infty} \left(\frac{b_{i-1}}{b_i - 1} - \frac{b_{i-1}}{b_i} \right) - \frac{1}{r} \right| \le \frac{1}{b+1}$$

for any $c \in \{0, 1, \dots, r-1\}$. Let ε_i be the term inside the absolutely value symbol $| \cdot |$ in the above inequality with $c = c_i$. Then by Lemma 5,

$$P := \mathbb{P}(a_{k+1}a_{k+2}\cdots a_{k+h} \equiv c_1c_2\cdots c_h \pmod{r} \mid a_k = b) = \prod_{i=1}^h \left(\frac{1}{r} + \varepsilon_i\right).$$

Therefore,

$$\begin{split} \left| P - \frac{1}{r^h} \right| &= \left| \prod_{i=1}^h \left(\frac{1}{r} + \varepsilon_i \right) - \frac{1}{r^h} \right| \le \left| \left(\frac{1}{r} + \frac{1}{b+1} \right)^h - \frac{1}{r^h} \right| \\ &\le h \left(\frac{1}{r} + \frac{1}{b+1} \right)^{h-1} \frac{1}{b+1} \le \frac{h}{b+1} \end{split}$$

Proof of Theorem 4 for $a_0(x)a_1(x)a_2(x)\cdots$:

A sequence $\xi = \xi_1 \xi_2 \cdots \xi_L \in \{0, 1, \cdots, r-1\}^L$ is called an h- ε -normal sequence of size L if for any $\eta \in \{0, 1, \cdots, r-1\}^h$, it holds that

$$\left| \frac{1}{L-h+1} \# \{ i \in \{1, 2, \cdots, L-h+1\}; \ \xi_i \xi_{i+1} \cdots \xi_{i+h-1} = \eta \} - \frac{1}{r^h} \right| < \varepsilon.$$

An infinite sequence $\xi = \xi_1 \xi_2 \cdots \in \{0, 1, \cdots, r-1\}^{\infty}$ is called h- ε -normal if there exists L_0 such that $\xi_1 \xi_2 \cdots \xi_L$ is an h- ε -normal sequence of size L for any $L \geq L_0$.

Let $\mathcal{N}_{h,\varepsilon,L}$ be the set of h- ε -normal sequences of size L. Then, by the large deviation theory (H. Cramér [1]), there exists 0 < H < 1 and L_0 such that for any $L \ge L_0$,

$$\frac{\#\mathcal{N}_{h,\varepsilon,L}}{r^L} > 1 - H^L$$

holds. Then by Lemma 6, it holds that

$$\mathbb{P}(a_{k+1}a_{k+2}\cdots a_{k+L} \in \mathcal{N}_{h,\varepsilon,L} \pmod{r} \mid a_k = b) \ge \#\mathcal{N}_{h,\varepsilon,L} \left(\frac{1}{r^L} - \frac{L}{b+1}\right)$$
$$> (1 - H^L)r^L \left(\frac{1}{r^L} - \frac{L}{b+1}\right) \ge 1 - H^L - \frac{Lr^L}{b+1}.$$

By Lemma 4, there exists $\delta (:= 2^{(1-\epsilon)/2}) > 1$ such that $a_k > \delta^k$ holds for any sufficiently large k with probability 1. Let $k_0 < k_1 < k_2 < \cdots$ be sequence of integers such that

$$k_0 = 0$$
, $k_1 = k_0 + L_0$, $k_2 = k_1 + (L_0 + 1)$, $k_3 = k_2 + (L_0 + 2)$, \cdots

Then, it holds for any sufficiently large n with probability 1 that

$$\mathbb{P}(a_{k_n+1}a_{k_n+2}\cdots a_{k_n+L_0+n}\notin \mathcal{N}_{h,\varepsilon,L_0+n} \pmod{r} \mid a_{k_n})$$

$$< H^{L_0+n} + \frac{(L_0+n)r^{L_0+n}}{\delta^{k_n}} = H^{L_0+n} + \frac{(L_0+n)r^{L_0+n}}{\delta^{nL_0+\frac{n(n-1)}{2}}}.$$

Since

$$\sum_{n=0}^{\infty} \left(H^{L_0+n} + \frac{(L_0+n)r^{L_0+n}}{\delta^{nL_0+\frac{n(n-1)}{2}}} \right) < \infty,$$

it holds with probability 1 that

$$a_{k_n+1}a_{k_n+2}\cdots a_{k_n+L_0+n} \in \mathcal{N}_{h,\varepsilon,L_0+n} \pmod{r}$$

holds except for a finitely many n, which implies that the infinite sequence $a_0a_1a_2\cdots\pmod{r}$ is h-2 ε -normal with probability 1.

Taking the intersection in $h \to \infty$ and $\varepsilon \to 0$, we get the conclusion that $a_0a_1a_2\cdots \pmod{r}$ is normal with probability 1. Taking the intersection in r again, we complete the proof of Theorem 4 for $a_0(x), a_1(x), a_2(x), \cdots$

The proof for $A_0(x), A_1(x), A_2(x), \cdots$ is similar and rather easier. The following Lemma for $A_0(x), A_1(x), A_2(x), \cdots$ corresponds to Lemma 3, the proof of which is just similar.

Lemma 7. For any $k = 0, 1, 2, \cdots$ and $b \ge D^k(2)$, it holds that

$$\mathbb{P}(A_{k+1} \ge 2D(b) - 1 \mid A_k = b) = \frac{1}{2}.$$

Hence, the random variables $\mathbf{1}_{A_{k+1}/A_k \geq 2D(b)-1}$ $(k = 0, 1, 2, \cdots)$ are independent and identically distributed with distribution (1/2, 1/2).

Since 2(D(b)-1)>2 for any $b\geq 2$, we have Lemma 4 for A_k instead of a_k .

The following Lemma for $A_0(x), A_1(x), A_2(x), \cdots$ corresponds to Lemma 3, the proof of which is just similar.

Lemma 8. For any $k = 0, 1, 2, \cdots$ and $c_1c_2\cdots c_h \in \{0, 1, \cdots, r-1\}^h$, it holds that

$$\mathbb{P}(A_{k+1}A_{k+2}\cdots A_{k+h} \equiv c_1c_2\cdots c_h (\text{mod } r) \mid A_k = b)$$

$$= \sum_{b_1 = D(b)}^{\infty} \left(\frac{D(b) - 1}{b_1 - 1} - \frac{D(b) - 1}{b_1}\right) \sum_{b_2 = D(b_1)}^{\infty} \left(\frac{D(b_1) - 1}{b_2 - 1} - \frac{D(b_1) - 1}{b_2}\right)$$

$$\cdots \sum_{\substack{b_h = D(b_{h-1})\\b_h \equiv c_h \pmod{r}}}^{\infty} \left(\frac{D(b_{h-1}) - 1}{b_h - 1} - \frac{D(b_{h-1}) - 1}{b_h} \right).$$

It follows from this lemma, we have Lemma 6 for $A_0A_1A_2\cdots$ instead of $a_0a_1a_2\cdots$ and $\frac{h}{D(b)}$ instead of $\frac{h}{b+1}$. Finally, this together with Lemma 7 implies that $A_0A_1A_2\cdots$ is an absolute normal sequence almost surely just same as $a_0a_1a_2\cdots$.

5 Is $a_0(2/5)a_1(2/5)a_2(2/5)\cdots$ an absolutely normal sequence?

We do not know even whether there is a rational number having the infinite LE, while the majority of rational numbers seem to have by numerical calculation. In spite of such an ignorant situation, we dare to conjecture that $\frac{2}{5}$ not only has an infinite LE, but also generates an absolutely normal sequence. We also calculate $\frac{\#\{k; a_k(2/5) \le n\}}{\log n}$, the result of which is far from convincing us that it converges to 1.

Here, we write down some numerical calculations of χ^2 -test concerning the absolute normality.

$$a_0(2/5)a_1(2/5)\cdots a_{299}(2/5) \pmod{2}$$

3-digits distribution: (40, 38, 35, 35, 38, 33, 35, 44) (i.e. numbers of occurrences of 000 is 40, 100 is 38, 010 is 35, ..., 111 is 44) giving χ_7^2 -value 2.35 (I. Guttman & S.S.Wilks [4])

4-digits distribution: (21, 19, 19, 18, 19, 16, 15, 20, 19, 19, 16, 17, 19, 16, 20, 24) giving χ^2_{15} -value 4.09

$$a_0(2/5)a_1(2/5)\cdots a_{299}(2/5) \pmod{3}$$

$$a_0(2/5)a_1(2/5)\cdots a_{299}(2/5) \pmod{5}$$

 $= 3332224000444223230142334421421201313421043313401332121230240441\\ 2123320241412141430124010340311101344323144430134113040011104141\\ 3013102222133304413133232400332421034321034331130431434313131141\\ 1411120334104240014141241002401140020200410432023332432034221410\\ 31200012342244420202430142023002142144030013,$

All the distributions are enough uniform so that the χ^2 -values are inside the probability level 0.2 from 0.

Acknowledgment: The author thanks Dr. Hiroaki Ito for giving him useful informations on the subject.

References

- [1] H. Cramér, On a new limit theorem of the theory of probability, Uspekhi Matematicheskikh Nauk 10, 166-178 (1948).
- [2] P. Erdős, A. Rényi ans P. Szűsz, On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest. EötvösSect. Math. 1 (1958), 7-32.
- [3] A. Rényi, A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest. EòtvòsSect. Math. 5 (1962), 25-32.
- [4] I. Guttman & S.S.Wilks, Introductory Engineering Statistics, John Wiley & Sons, New York, 1965.
- [5] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, New York, 1967.
- [6] W. M. Schmidt (1980, 1996), Diophantine approximation, Lecture Notes in Mathematics (Springer) 785. doi:10.1007/978-3-540-38645-2.
- [7] C. Aistleitner, V. Becher, A-M. Scheerer & T. Slaman, On the construction of absolutely normal numbers, arXiv:1707.02628 (2017).
- [8] Hiroaki Ito, Unit-fraction expansions (private communication).