Expansions by reciprocals of integers, rational
approximations and absolutely normal sequences

Teturo KAMAE*

1 Introduction

Any real number z € [0, 1) can be expressed as a finite or infinite sum:

T=— 4 — 4 — 4, (1.1)
no ni n9y

where 2 < ng < ny < ng < --- are integers, (1.2)

which is called an expansion by reciprocals of integers of x. This expansion
is called finite or infinite according to whether the right hand is a finite sum
or not. The empty sum means 0.

On the space of finite or infinite sequences of integers ngning - - - satisfying
(1.2), we define the lexicographic order <j., as follows:

nening « - <jex NGMYNY - - - (1.3)
if and only if there exists k¥ = 0,1,--- such that n, = n for any i =
0,1,--- ,k — 1 and that either n; < nj or n) is not defined while ny, is

defined. Note that n} is not defined is equivalent to say that nj = co. In
this sence the empty sequence is largest.

Various expansions of this type are known, but in this paper, we specially
consider the following 2 of them.

Greedy expansion (GE, for short), that is, among the expansion by
reciprocals of integers (1.1) of z, ngning - -+ is lexicographically smallest.

Lazy expansion (LE, for short), that is, (1.1) is defined by the following
algorithm:
Let f:[0,1) — [0,1) be

A=) (a-d5) @>0
f@) { unde fined ’ (x=0) 7 (14)
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and define ay, : [0,1) — {2,3,---} (k=0,1,2,---) by
1

TR (z)

Then, the finite or infinite sequence (1.2) is given by

a(z) = [ Ik (1.5)

ng = ap(x), n1 = (ag(z) — 1ai(x), ng = (ap(x) — 1)(a1(z) — Dag(x), ---.
(1.6)
The sequence ag(z),a1(x),az(x), - is called the partial lazy quotient of x.
GE also has an expression by a piecewise linear function. That is, define

a piecewise linear function g as follows:

r— 7 (z>0)
9() { undefined (xz=0) ' (L.7)

and define .

A = Tgrtay

This gives the GE of z € [0,1) with ny = Ax(z) (k =0,1,2,---) in (1.1).
The sequence Ag(x), A1(z), A2(x),--- is called the greedy quotient.

GE and TE are well known as Sylvester expansion ([2], for example) and
modified Engel expansion ([3], for example), but here just because of the
comparison, we call them GE and LE.

We give 4 examples of finite GE and LE. In the first example, GE and LE
coincide but in the other 3, they differ.

1 (k=0,1,2,---). (1.8)

23 1 1 1 1 1

1
30 2713 60" 27160

59 _1,1,1 1 11
120 3 7 65 10920 3 8 30
9_1 1 1 1,1 1 11
30 3 7791 378736 960 ' 38130 ' 2083200
1
+ + +
304854000 ' 45421200000 @ 4208418013800000
1 1 1 1 1 1
9= 44
€ 5 5755 T 0999 " 3620211523  25838201785967533906
1
1 3408847366605453001 140558218322023440765
U S R S S 1 N
T2 5 56 ' 2392 ' 152100 ' 19768320 ' 5179299840 ’

where the Taylor expansion

gt 1
CTfT T 21 T 120 nl

is lexicographically larger than both of GE and LE.



The LE of 2/5:

2 1 n 1 n 1 n 1 n 1 n 1 n 1
5 3 16 252 5236 134946 = 59386236 352811938752
1

t 9157082653267360 | 244044771900683906880 |

seems to be infinite, but we cannot prove (see Section 5).
The following theorems are well known, but we give proofs of some of
them by the reasons of self-containedness and difficulty to get the paper.

Theorem 1. (A. Rényi [3])

(1) A finite or infinite sequence of integers by, by,ba, -+ is the partial lazy
quotient of some x € [0,1) if and only if

(1-1) by > 2, b1 > b +1 (k=0,1,2,---), and

(1-2) either it is finite or the strict inequality holds infinitely often in (1-1).
(2) For any x,y € [0,1), y < = if and only if

ao(z)ar(z)az(x) - -+ <iex ao(y)ar(y)az(y) - .

(3) The partial lazy quotient {ar = ar(x); k=0,1,2,---} define a Markov
process under the Lebesque measure on x € [0,1) such that
Plap = 1) = ——— and (1.9)
ap =n) = an .
0 (n—1)n
—M— n>m+1

Plagtr =nlap=m) = { (n—Ol)n otherwise

foranym=k+2k+3,--- (k=0,1,2,---).

Theorem 2. (A. Rényi [3])

(1) Let Xy, = lncfag,aras,} (0 =2,3,---). Then, Xa, X3,--- are indepen-
dent random variables such that E(X,) =P(X, =1)=1/n (n=2,3,---).
(2) Conversely, the distribution of the random wvariables ag,ai,as, - 1is
characterized as above. That is, if Xo, X3, are independent random vari-
ables such that P(X,, = 1) =1/n (n=2,3,--+) and let aj < a} < ah < ---
be such that {aj,a’,as,- -} = {i; X; =1}, then

(aé]uallvaév o ) ~law (CLQ,CLl,CLQ, T )

(8) For almost all x € [0,1) with respect to the Lebesgue measure, it holds

that '
A U0
n—00 logn

Theorem 3. (P. Erdds, A. Rényi and P. Sziisz [2])
(1) The greedy quotient {Ay = Ag(z); k = 0,1,2,---} define a Markov

1.



process under the Lebesque measure on x € [0,1) such that

P(Ag = n) = (n—ll)n and (1.11)

(m—1)m
P(Agr1=n|Ar=m) = { e v = D(m)

0 otherwise

for any k = 0,1,2,--- and m = D¥(2),D¥(2) + 1,D*(2) + 2,---, where
D(m)=(m—-1)m+1 (m=2,3,---) and D*(m) = D(D(m)) = D((m —
Im+1)=(m—-1m((m—-1)m+1)+1, ---

(2) For any rational number x € [0,1), the GE of x is finite. The length of
the expansion is at most p, where x = p/q is the irreducible fraction.

(3) For almost all x € [0,1) with respect to the Lebesque measure,

i 108 Ak(2)
k—o00 2k

exists. This value may depends on x € [0,1).

Definition 1. An infinite sequence of integers 2 < bg < by < by < -+ is
said to be absolutely normal if for any r = 2,3, -- -, the sequence

boblbg s (mod 7‘)
is a r-adic normal number.

Theorem 4. Almost all Ag(z)A1(x)Az(x), -+ and ag(x)ar(z)az(x) - -+ with
respect to the Lebesque measure on x € [0,1) are absolutely normal.

2 Proof of Theorem 1

Lemma 1. Let z € [0,1) and by = ap(x),b1 = a1(x), b = az(x),---.
(1) It holds 2 < by < by < by < --- and that

1 1
1<by—1<—-<b<b—1<—_—=<b <
x f(z)
1
Sbkflfbk_1<fk7($)§bk§"'-
(2) For any k =1,2,---, we have
x—i+¥+ + L
bp  (bo—1)by (bp— 1)+ (bg—o — 1)bg_1
N 4(a)
(bo = 1)+ (bg—2 — 1)(bg—1 — 1)
SR - ! +
bo  (bo—1)b (bo = 1)+ (bg—2 — 1)bg—1 ’



hence (1.6) implies (1.1).
(8) Fory € [0,1), ap(y) = by, a1(y) = b1, ,ax(y) = by holds if and only if

1 1 1 1

— +

bo ' (bo — 1)by (bo — 1) (byp—z — Dbp_1 = (bo — 1)~ (bp_1 — 1)bg

1 1 1
<Y< —+———F+
Y% T (o — Db (o — 1) (be—z — )by
1
+

(bo — 1)+ (bk—1 — 1) (b — 1)

Proof (1) If x € [0,1), then as long as by = ap(x),by = ai(z),by =
az(x),--- are defined, it holds that

1 1
b():[*.|22andb0—1<*§bo. (2.1)
x x
Hence,
AU R S S
- bo bp— 1 bo N (bo — 1)1)0.
Therefore,
1 1
0< f@)=(bo— D~ ) <5,
0 0
so that by < +~ follows. Also, replacing  in (2.1) by f(z), we have

f(@)

b — 1= ao(f(z) — 1< f(lx) < ao(f(x)) = br.

From these inequalities, it follows that by < b1, and that

1
bo§b1—1<7<bl.

flx) —
Replacing = by f(x) in the above, we have

b1 <by—1< —— <bsy.

fx) ~

Repeating this, we have 2 < by < by < by < --- and

1
x

1 1
1<by—1<—-<b<b—1<—_—~<b <
T

f(z)

Sbklébk—1<fk1(x)§bk§---
(2) Since by = ag(z) = [1/z] and f(z) = (bg — 1)(z — %),
_ 1, @)
:c—%—i-bo_l (2.2)
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: _ 1 =
holds. Since f(z) = ¢~ + 57, we have

(@)
1 f@) 1 gy teg 1 1 #2(x)

= - = — =+ + .
bp bo—1 b bp — 1 bo  (bp—1)by  (bg—1)(by — 1)
Repeating this, we have the first half of the equation in (2). The rest follows

since the last term in the 2nd side of the equation is either 0 or tends to 0
as k — oo.

(3) Assume that y € [0, 1) satisfies that ag(y) = bo,a1(y) = b1, -+ ,ar(y) =
bi. Then by (1), by — 1 < f,%(y) < by. Hence, by (2) with k — 1 in place of
k, we have

1 1 1 1
4 +
bo  (bg — 1)by (bo— 1)+ (bg—o —1)bg—1 (bop—1)---(bp—1 — 1)bg,
1 1
(bo — 1)by (bo — 1)+ (bp—2 — 1)bp—1
1
bo— 1)+ (bg—1— 1)(bx — 1)

Moreover, f*(y) is linear in this interval with the image equal to [i, bk%l)
Therefore, the above interval coincides the set of y with ag(y) = bo, a1(y) =

by, ,ar(y) = b, which proves (3). o

1
<y< —

1

Lemma 2. Let 2 < bg < by < by < --- be an arbitrary infinite sequence of
integers. Then, we have

1 1 1 1 1
bo o= D)br (b0 — 1)(br — Dbs (bo— D(br — )(ba — Dby |~ by—1
The equality holds if and only if by = by + k holds for any k. =1,2,---.
Proof Note that

LA S ! - ! +oe

bo  (bo—1)by  (bp—1)(by —1)ba ~ (bp — 1)(by — 1)(bga — 1)b3
converges. Assume that by = by + k holds for any k =1,2,---. Put B = by.
Then, we have

1 1 1 1

bo " (bo— b1 (b — 1)(br — 1)bs (b — 1)(br — 1)(bs — 1)
1 1 1 1
5" ) T B-1)BB+2)  (B-1)BB+(B+3

B (B-1)(B+1

1 1 1 1
T B-1 (B—l)B+(B—1)(B+1)+(B—l)B(B+2)
1
T B-UBBT B3
1 1 1 1
= - + +

B—-1 (B-1BB+1) (B-1)B(B+2) (B-1)B[B+1)(B+3
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1 1 1

“B-1 B-1)BB+HB+2 B-1BB+HB+3)
1 1 1

“B-1 B-DBB+1) Btk B-)BBIL- - (Brktl)
1

- =

If by, = by + k fails at k = kg for the first place. Then,
1 1

(bo—1)(b1— 1) (bp1 — by (B—LBB+1)---(B+k—2)(B+k)

holds for £k =0,1,--- , kg — 1, but

1 1
o -1 —1) (o — Db ~(B-DBB+1)- - (B+k—2)(B+k

holds for k = kg, kg + 1,---. Thus, we have

1 1 1 1 1

b o= Db1 (o= D)(bi = Dbs (o =D = D(ba =15~ -1
O

Proof of Theorem 1:

Let 2 < by < by < by < --- be an arbitrary sequence of integers such that
either it is finite or there does not exist k such that by.,, = by + n for any
n=1,2,---. Define

1 1 1 1

T e T o= b (o= 1)1 = ba | (b = 1)(br — 1)(ba — 1)bs

Then by Lemma 2, % <z< bo%l holds. Hence, by — 1 < % < by and

ap(z) = bo. It also follows that

1 1 1 1
F@) =00 =Dl =) = 5+ G =05 T i = )b = 10
Repeating this, we have by = [1/f(z)],b2 = [1/f?(x)],---, which proves
the “if” part of (1).

Suppose that an infinite sequence 2 < by < by < by < --- of integers
satisfies that there exists k such that by, = by +n for any n =1,2,--- and
that it is the partial lazy quotient of some z € [0,1). Take the smallest k as
this. Then, either £k =0 or kK > 0 and by_1 < b — 2. Let ng,nq1,n2,--- be
defined by (1.6) with these bg, b1, b, - - - instead of ag(z), a1 (x), az(x),---. .
Then, putting

C = (bo—l)(bl —1)~-(bk,1 —1) and K:bk,



we have
1 1 1
— + +
Nk Mg+l Ng42

11 1 1
_C@(WKMK+D+MUMK+%+”>

1/ 1 1 1 1
_C<K—JXK—M{WK—MK+U+m>nKm+m+”>

1/ 1 1
_C(K—fXK—UKm+U+XK—UmK+m+”>

1/ 1 1 11
ZC<K—JXK—HMK+WK+3+M>ZWZCK—1

1
(o= 1) (b1 = 1) (b1 — Db — 1)
Hence, we have
S S 1
bop  (bo—1)by (bo—1)(by —1)--- (b — 1)

with 2 < by < by < --- < bg_1 < by — 1. Therefore, x has the partial lazy
quotient by, b1, - -+ ,brx_1,br — 1, which contradicts with the assumption that
the partial lazy quotient of x is bg, b1, ,bgp_1, bk, bgr1,- - -

(2) follows from Lemma 2 and (1).

(3) It follows from Lemma 1 that for any integers 2 < by < by < -+ < bg1,

P(ag = by, a1 = b1, ,a = by)

1 1 1
e 7+7+"'+
<m (bo — )by (o — 1) (be—a — 1)br_s

¥ ! )
(bo—1) -+ (bg—1 — 1)(bx — 1)

1 1 1
(m (bo — 1)by (bo— 1)+ (bp—z — )b

+ ! )

(bo — 1)+ (bp—1 — 1)bg
1

" (b — 1) (b1 — D) (b — Dby

In the same way, we have

P(ag = bo,a1 = b1, -+ ,ar = by, ag41 = by1)
1
~(bo— 1)+ (bk—1 — 1) (b = 1) (brr1 — Dbgya




Hence, we have

ot
(bo — 1)bo

P(ags+1 = b1 | ao = bo, a1 = b1, -+ a5 =by) =

P(ag = by) =
I R
(b1 — Vb1’

which proves (3).

3 Proof of Theorem 2
(1) We first prove that

E(X,) =1/n (3.1)
by the induction on n. Since

1

E(X2) =Plao =2) = 3,

(3.1) holds for n = 2. Let n > 3 and assume that (3.1) holds up to n — 1.

Then, using the first half of Theorem 2 and the introduction hypothesis, we
have

E(Xn) = P(n € {ak; k= 071727"'})

n—1n—2
=P(ap =n) + Z ZP(ak =n, ag_1 =m)
m=2 k=1
1 n—1 n—2 m
= - —P(ag—1 =m)
(n—1)n %;(nl)n
1 nd m
- - " p o
(n _ 1)n + Tr; (TL _ 1>n (m e {aO,G/l,a/Q, })
1 n—1

which proves (3.1).
Now let us prove the independence of Xo, X3,---. It is sufficient to prove
that for any n > 1 and 2 < iy < is < -+ < ip,

1
n

(3.2)



(3.2) holds for n = 1. Assume that n > 2 and (3.2) holds for n — 1. Since

P(Xi Xy -+ KXoy, = 1)
=P(X;, Xip - Xi,_, = DP(X, = 1]X;, X5, - X5, = 1)
=P(X;, Xip - Xi,_, = DP(X,, = 1|X;,_, =1)
1

=—PX; =1|X; =1
ZlZQ .. in—l ( in ’ tn—1 )
by the Markov property of (a,; n = 2,3,---), it is sufficient to prove that

for any 2 < m < n,

P(X, = 1| X = 1) = % (3.3)

We use the induction on n—m. If n —m = 1, then (3.3) follows from (1.10).

Assume that n —m > 2 and (4.3) holds for any smaller n —m. Let E be

the event that X,,+1 = Xyyo =+ = X;,—1 = 0. Then by (1.10), we have
P(X, = 1[Xm =1) =P(EA X, = 1| Xy = 1) + P(E° A Xy, = 1| X, = 1)

— e PO = 1B A Xy = DP(E X = 1

_om I mm w1 L)L
(n—1n nk:m+l(/~c—1)k_(n—1)n n\m n-1) n’

which completes the proof of (2).
(2) is clear since the distribution of (a}, aj, a}, - -) is uniquely determined.

(3) Let
Xo+Xz+---+ X,

Vo= —To1. 51 (n=2,3,--).
273

n

Then, since

E(X;) = % and V(X;) = % (1 - 1) <

and X5, X3, -+ are independent, it holds that

E(Y,) =1 and V(Y,) <

Since - -
D V(Vye) =00 k?) < o,
k=1 k=1

by the usual method using Chebyshev’s inequality and Borel -Canteli Lemma,
we have

k—o0
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with probability 1. Let 28* < n < 2D Then since

1 1 1 1 1 1
§+§++W §+§++2(k7 +1)2

1 1 1 ok2 = dn 1 1 1 2(k+1)2>
§+§++2(k7 +1)2 §+§++2?

we have lim,,_,~, ¥;, = 1 with probability 1. Thus, (4) follows.

4 Proof of Theorem 4

Lemma 3. For any k=0,1,2,--- and b > k + 2, it holds that
}P’(ak_H > 2b | ap = b) = =

Hence, the random variables 14, | jq;,>2 (k =0,1,2,--+) are independent
and identically distributed with distribution (1/2,1/2).

Proof By Theorem 2,

Plagsr < 2b|ap =b) = Z P(ags1 = & | ax = b)
£=b+1

VAR 1 1

= (b(b+1)+(b+1)(b+z)+"'+(2b_1)2b>
1 1 1

_b(b_Qb) 3

Hence, P(1,, ,,/q,>2 | ar = 1) = % Since this probability is indifferent to b
and the sequence of random variables ag, a1, ao, - - is Markov, the random
variables {1 k=0,1,2,---} are i.i.d. with distribution (1/2,1/2).
Od

apy1/aK>2>

Lemma 4. It holds with probability 1 that for any ¢ > 0, aj > 20-9k/2
holds for any sufficiently large k.

Proof Let e > 0 be given. By the law of large numbers (W.Feller [5]) and
Lemma 3,

k—1
1a,1/a;>2 > (1 —€)k/2, and hence a; > o(1=e)k/2
=0
holds for any sufficiently large k& with probability 1. O

11



Lemma 5. For any k = 0,1,2,--- and cica---¢c, € {0,1,--+ ,r — 1}h, it
holds that

P(ag+1ak42 - - agrpn = c1c2---cp(mod 1) | ap, = b)

= > ﬁ (bfi:11 - bibj) (bo = b)

b1, ,bp =1
b<by <--<bp,
by=cy, - ,bp=cp (mod r)

O b b) S (61 bl)
i b1 bp
bh—1 b, )’

b1=cq(mod r) bo=co(mod 1)
bp=bp,_1+1

by =cp (mod r)

Proof By Theorem 2, we have

P(ag10k42 - aggn = biba -+ - by | ar = b)
=P(ags1 = b1 | ap = b)P(ags2 =ba | ag1 =b1) - - Plagsn = by | agrr—1 = bp—1)

_ b by O ﬁ bi-1 bimy
(br — Db (b — Vb2 (b~ Dby AA\B =17 5 )

which implies our Lemma. O

Lemma 6. For any k =0,1,2,-- and cica---c, € {0,1,--- ,r — 1}",

h

1
|P(ak410k42 - - - Qpn = c102 -+ - cp(mod 7) | a, = b) rh’ S|

Proof Note that for ¢ =1,2,---,h, it holds that

- bi-1 bi—1) _
> (bi_l b¢>_1 (4.1)

bi=b; _1+1

and that the summand is decreasing in b;, where by = b. Therefore for any
c,d € {0,1,--- ,r —1}, it holds that

(o] o0
Z ( bi-1 bz‘—l) _ Z ( bi-1 bz‘—l)
i U R i U
b;=c(mod r) b;=d(mod r)

1 1

< the first term of (4.1):b 1 < At
i1

12



It follows that

o0

Z <bi—1 _bi—1>_1 < 1
byt 41 b; —1 b; rl T b+1
b;j=c(mod 1)

for any ¢ € {0,1,--- ,r — 1}. Let ; be the term inside the absolutely value
symbol | | in the above inequality with ¢ = ¢;. Then by Lemma 5,

h
1
P :=P(agi10k42 - agrp =102+ --cp(mod 1) | ap = b) = H <7“ + 6,‘) .
i=1

Therefore,
h h
1 1 1 1 1 1
P-—|= - - I S
' rh il;[l<7“+€l> rh _‘<r+b—|—1> rh
p(L, 1 S S
- r b+1 b+1 ~b+1
O
Proof of Theorem 4 for ag(z)ai(z)az(x)---:
A sequence £ = &6 ---&p € {0,1,--- ,r — 1}F is called an h-e-normal
sequence of size L if for any n € {0,1,--- ,7 — 1}", it holds that
1 . 1
‘L—hjtl#{z €{L,2,--- , L—-h+1} &G&it1- - Givn—1 =1} — S
An infinite sequence § = &1&2--- € {0,1,--- ,r — 1}* is called h-e-normal

if there exists Ly such that £1& - - &y is an h-e-normal sequence of size L
for any L > Ly.

Let Npe 1 be the set of h-e-normal sequences of size L. Then, by the large
deviation theory (H. Cramér [1]), there exists 0 < H < 1 and Lg such that
for any L > Lo,

>1-—HY

#Nh,a,L
rL
holds. Then by Lemma 6, it holds that

1 L
P(ags1ak+2 - agrr € Nper (mod 7) | ag =) > #Npo 1 <T‘L - b+1>

1 L Ll
11— = - —— ) >1-H' - .
> r <rL b-+1> = b+ 1

By Lemma 4, there exists 6(:= 2(!1=9/2) > 1 such that a; > 6* holds
for any sufficiently large k with probability 1. Let kg < k1 < ko < --- be
sequence of integers such that

ko =0, k1 = ko + Lo, k2:k1+(L0+1), k3:]€2+(L0+2),

13



Then, it holds for any sufficiently large n with probability 1 that

P(akn—i-lakn—l—Z v Qg+ Lo+n ¢ Nh,a,LoJrn (mod r) ’ akn)
(Lo + n)rL0+n (Lo + n)rL0+"

< HL0+n+ :HL0+TL+
5kn (SnLOJ'_ ”(”2—1)
Since
S L (Lo + n)rkotn
Z Hbotn 4 ——— o ) <0,
= (571L0+n n2

it holds with probability 1 that

Q41042 Oyt Lotn € Nhge,Lo+n (mod 7)

holds except for a finitely many n, which implies that the infinite sequence
apajasz - -+ (mod r) is h-2e-normal with probability 1.

Taking the intersection in h — oo and € — 0, we get the conclusion that
apajasz - -+ (mod r) is normal with probability 1. Taking the intersection in
r again, we complete the proof of Theorem 4 for ay(x),a1(x), az(z),- -

The proof for Ag(z), Ai(x), A2(z),--- is similar and rather easier. The
following Lemma for Ag(z), A1(z), A2(x), - corresponds to Lemma 3, the
proof of which is just similar.

Lemma 7. For any k =0,1,2,--- and b > D*(2), it holds that
1

Hence, the random variables 14, /4, >2D(b)~1 (k=0,1,2,---) are indepen-
dent and identically distributed with distribution (1/2,1/2).

Since 2(D(b) — 1) > 2 for any b > 2, we have Lemma 4 for Ay, instead of
ag.

The following Lemma for Ag(z), A1(z), Aa(z),- - corresponds to Lemma
3, the proof of which is just similar.

Lemma 8. For any k = 0,1,2,--- and cica---cp € {0,1,--- ,r — 1} it
holds that

P(Ak+1Ak+2 s Ak+h = C1Cg - ch(mod 7“) | Ak = b)
B > D(b)—1 D@®) -1 > D(b)—1 D(b) -1
S (51—1 o ) 2 ( by—1 by )

b1 =D(b) bo=D(b1)
bi=cq(mod r) bo=cg(mod r)

i (D(bh_n —1  D(bp-1) — 1)
bp=D(bp—1) bn =1 on
bp=cp (mod )
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It follows from this lemma, we have Lemma 6 for AgA1As--- instead of
apaias - - - and % instead of b%. Finally, this together with Lemma 7
implies that AgA1As--- is an absolute normal sequence almost surely just

same as apai1as - - - .

5 Is ag(2/5)ai1(2/5)az(2/5)--- an absolutely normal
sequence?

We do not know even whether there is a rational number having the infi-
nite LE, while the majority of rational numbers seem to have by numerical
calculation. In spite of such an ignorant situation, we dare to conjecture
that % not only has an infinite LE, but also generates an absolutely normal

sequence. We also calculate W, the result of which is far from

convincing us that it converges to 1.

n ‘610‘ 650 ‘ 6100 ‘ 6500 ‘ 61000 ‘ 61500 ‘ 62000
#HE BB 10.810.94 [ 0.96 | 0.944 | 0.946 | 0.946 | 0.9585

Here, we write down some numerical calculations of x?-test concerning
the absolute normality.

ap(2/5)a1(2/5) - - a29(2/5) (mod 2)
=1000110111001000011001000100101000001110000111110000001011111111
0100000010101000000111000111100100111100100100101110100111010000
0011111011001100110111101110110001000101110010011001100011101011
0111111010101101001011111101001010111010000010111000011010110010
10000011111111000111100110100110001000101101,

3-digits distribution: (40,38, 35, 35, 38, 33, 35,44)
(i.e. numbers of occurrences of 000 is 40, 100 is 38, 010 is 35, ..., 111 is 44)
giving x2-value 2.35 (I. Guttman & S.S.Wilks [4])

4-digits distribution: (21, 19,19, 18,19, 16, 15,20, 19,19,16,17,19, 16, 20, 24)
giving x3s-value 4.09

ap(2/5)a1(2/5) - - az29(2/5) (mod 3)
=0201012111222211111122212101010120110112010001201102122012020102
0210222100110212212020020221112002100202010102221200121011001201
1102012011211101200202000122011110012220200011021102120201201210
1000221022111112021221012220001120211010001200022120110112100112
20111000220012100021111200221011000101220211,
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3-digits distribution: (10,11,10,10,13,11,12,17,7,12,14,15, 15,
16,9,10,7,11,9,9,11, 16, 10,8,8,10,7)
giving X%G—value 19.66

ap(2/5)a1(2/5) - - a29(2/5) (mod 5)
=3332224000444223230142334421421201313421043313401332121230240441
2123320241412141430124010340311101344323144430134113040011104141
3013102222133304413133232400332421034321034331130431434313131141
1411120334104240014141241002401140020200410432023332432034221410
31200012342244420202430142023002142144030013,

2-digits distribution: (12,11,11,11,11,14,11,13,12,16,11,11, 8,12,
12,9,16,10,14,12,10,17,12,12,11)
giving x3,-value 8.94

All the distributions are enough uniform so that the y2-values are inside the
probability level 0.2 from 0.

Acknowledgment: The author thanks Dr. Hiroaki Ito for giving him
useful informations on the subject.
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