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Abstract

Let A be a finite set with #A ≥ 2 and N = {0, 1, 2, · · · }. A nonempty
closed set Θ ⊂ AN is called a superstationary set if for any infinite
set {N0 < N1 < · · · } ⊂ N, we have {ω(N0)ω(N1) · · · ; ω ∈ Θ} = Θ.
That is, Θ remains invariant for any selective observations, say at
N0 < N1 < · · · .

More generally, let Σ be any infinite set and Ω ⊂ AΣ be a nonempty
set. Let χ be a nonprincipal ultrafilter on Σ and let Ω[χ∞] be the
projective limit of Ω[χk], where Ω[χk] is the value at the product ul-
trafilter χk of the natural extension of the mapping S 7→ Ω[S] from
S = (s1, · · · , sk) ∈ Σk to a subset of Ak given by

Ω[S] = {ω(s1) · · ·ω(sk); ω ∈ Ω}.

We prove that Ω[χ∞] is a superstationary set, which we call a super-
stationary factor of Ω at χ.

In the study of dynamical systems with time parameter, quantities
which are sensitive to the time scaling, such as entropy have been of
exclusive interest. On the contrary, superstationary factors represent
properties depending only on time order, and not on the spacing of
time. These properties are shown to reflect local aspects of the geom-
etry behind it.

We also discuss a stronger and constructive version of superstation-
ary factors.

1 Introduction

In the study of symbolic dynamics with discrete time, quantities such as
entropy and averages play an essential role. In this article, we continue our
development of the notion of superstationarity. The emphasis then changes
to properties which only depend on the order, and are in particular invariant
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under time scaling in a general sense. We shall explain how superstation-
ary factors of symbolic systems are related to what we call “infinitesimal
geometry” in the case of dynamics defined by discretizing continuous space
geometrically using partitions.

Let us review the notion of superstationary set (so far, we have called it
“super-stationary set” with “-”) and a motivation to have introduced it.

Let A be a finite set having at least two elements. Let Σ be an arbitrary
infinite set. An element ω ∈ AΣ is considered as a mapping Σ → A. For
a subset S ⊂ Σ, let ω|S be the restriction of the mapping ω : Σ → A to
S ⊂ Σ. Define the complexity pΩ(S) which is a function of finite subsets
S ⊂ Σ by pΩ(S) := #Ω|S = #{ω|S ; ω ∈ Ω}, # denoting the number
of elements in a set. The maximal pattern complexity of Ω is defined by
p∗Ω(k) := supS⊂Σ,#S=k pΩ(S) as a function of k = 1, 2, · · · . If pΩ(S) depends
only on #S, then we call Ω a uniform set. In this case, pΩ(k) := pΩ(S)
defined as a function of k = #S is called the uniform complexity of Ω.

Let N = {0, 1, 2, · · · } and ω ∈ AN. In this special case that Σ = N, we use
some conventional notations. We consider ω an infinite word ω(0)ω(1)ω(2) · · ·
over A as well as the mapping ω : N → A. On the other hand, an element
ξ in A∗ := ∪∞

k=0Ak is considered as a finite word ξ1ξ2 · · · ξk over A. For
a ∈ A, we denote a∞ = aa · · · ∈ AN. We also denote A+ := ∪∞

k=1Ak, that is,
A+ = A∗ \ {ε}, where ε is the empty word.

For ω ∈ AN and S ⊂ N, we denote ω[S] = ω(s1)ω(s2) · · ·ω(sk) ∈ Ak,
where s1 < s2 < · · · < sk are the elements in S arranged in order. More-
over, for an infinite set N = {N0 < N1 < N2 < · · · } ⊂ N, we denote
ω[N ] = ω(N0)ω(N1)ω(N2) · · · ∈ AN. Thus, we identify a subset of N with
the increasing sequence of its elements. For Θ ⊂ AN and S, N as above, we
denote Θ[S] = {ω[S]; ω ∈ Θ} and Θ[N ] = {ω[N ]; ω ∈ Θ}. A nonempty
set Θ ⊂ AN is called a k-superstationary set if Θ[S] = Θ[{0, 1, · · · , k − 1}]
holds for any S ⊂ N with #S = k. It is called a superstationary set if it
is closed and Θ[N ] = Θ holds for any infinite subset N of N. It is clear
that a nonempty closed set Θ ⊂ AN is superstationary if and only if it is
k-superstationary for all k = 1, 2, · · · . It is also clear that a superstationary
set is a uniform set. For example, any one point set {w} with ω ∈ AN is a
uniform set, while it is a superstationary set only if ω = a∞ for some a ∈ A.

The notion of superstationary set was introduced for the first time to
classify pattern Sturmian words [2, 3]. It is known that for any infinite
word ω ∈ AN, p∗

O(ω)
(k) ≥ 2k holds for any k = 1, 2, · · · if and only if ω is

not eventually periodic, where O(ω) is the closure of {Tnω; n ∈ N} and
T is the shift on AN. An infinite word ω ∈ AN with the property that
p∗
O(ω)

(k) = 2k (k = 1, 2, · · · ) is called a pattern Sturmian word. It is known

that for a recurrent pattern Sturmian word ω ∈ AN, there exists an infinite
set N ⊂ N such that Θ := O(ω)[N ] is a superstationary set. Such Θ is
called a superstationary factor of O(ω).
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There are two types of recurrent pattern Sturmian words, rotation words
ω1 ∈ {0, 1}N and Toeplitz words ω2 ∈ {0, 1}N defined as follows. Let α be an
irrational number and a, b be real numbers such that a < b < a+ 1. Define
ω1 ∈ {0, 1}N by

ω1(n) =

{
0 nα ∈ [a, b) (mod 1)
1 nα ∈ [b, a+ 1) (mod 1).

Then, ω1 is a recurrent pattern Sturmian word. The set of superstationary
factors of O(ω1) is {Θ1}, where

Θ1 = {0i1∞; i ∈ N} ∪ {1i0∞; i ∈ N}.

For n ∈ N, let τ(n) ∈ N be the maximum k ∈ N such that 2k divides n.
Define ω2 ∈ {0, 1}N by

ω2(n) =

{
0 if τ(n+ 1) is even
1 if τ(n+ 1) is odd.

Then, ω2 is a recurrent pattern Sturmian word of another type. In fact, the
set of superstationary factors of O(ω2) is {Θ2,Θ

′
2}, where

Θ2 = {0∞} ∪ {0i10∞; i ∈ N} ∪ {0i1∞; i ∈ N},
Θ′

2 = {1∞} ∪ {1i01∞; i ∈ N} ∪ {1i0∞; i ∈ N}.

In this article, the notion of superstationary factors is generalized so that
any nonempty set Ω ⊂ AΣ has a superstationary factor.

Superstationary sets were studied in [4, 5, 6, 7, 8]. For ξ ∈ Ak and ω ∈ AN,
ξ is called a super-subword of ω if there exists S ⊂ N with #S = k such
that ω[S] = ξ. We use the following characterization of the superstationary
sets. That is, the family of superstationary sets coincides with the family of
sets expressed as P(Ξ), where Ξ is a finite (possibly, empty) subset of A+

satisfying the condition (#) (see [7]) and P(Ξ) is the set of infinite words
where all words in Ξ are prohibited as super-subwords. For example, the
above Θ1, Θ2 and Θ′

2 are written as Θ1 = P(010, 101), Θ2 = P(101, 110)
and Θ′

2 = P(010, 001). Using this characterization, we get rich properties of
the uniform complexity, since the uniform complexity is always realized by
a superstationary set [8].

Let Σ be any infinite set and βΣ be the Stone-Čech compactification of
Σ (see [1], for example). That is, βΣ is a set of ultrafilters on Σ, where
principal ultrafilters are identified with elements in Σ, and βΣ \ Σ consists
of all nonprincipal ultrafilters on Σ. It is known that βΣ is a compact
Hausdorff space and βΣ \Σ is a closed subset of it. For a subset U of Σ, let
U(U) = {χ ∈ βΣ; U ∈ χ}. Then, U(U) is a clopen subset of βΣ. Moreover,
the family {U(U); U is a subset of Σ} is a topological base of βΣ. Let Σ
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be an infinite set and χ ∈ βΣ. In Section 2, we define the k-times product
χk = χ× . . .× χ of it. It is an element of β(Σk).

For a nonempty set Ω ⊂ AΣ, define the superstationary factor Ω[χ∞] ⊂ AN

at χ ∈ βΣ to be the projective limit of Ω[χk] as k → ∞, where Ω[χk] is the
value at the ultrafilter χk of the natural extension of the mapping S 7→ Ω[S]
from Σk to the family of subsets of Ak, where for S = (s1, . . . , sk) ∈ Σk,
Ω[S] = {ω(s1) . . . ω(sk); ω ∈ Ω}. Then, the following theorems hold.

Theorem 1. Let χ ∈ βΣ and k = 1, 2, . . ..
(1) The restriction of Ω[χk+1] to the first k-coordinates coincides with Ω[χk].
(2) Ω[χ∞] is a superstationary set.
(3) If χ is a principal ultrafilter, then Ω[χ∞] = {a∞; a ∈ Ω[χ]}.

Theorem 2. For any nonempty set Θ ⊂ AN and χ ∈ βN \ N, Θ is a
superstationary set if and only if Θ[χ∞] = Θ.

Let (Ω, T ) be a symbolic dynamics. That is, Ω is a nonempty closed sub-
set of AN such that TΩ ⊂ Ω. In the studies of dynamical systems with
time parameter N, quantities which are sensitive to the time scaling, like
entropy have been of primary interest. Here in the contrary, the supersta-
tionary factors which are irrelevant to the time scaling are studied. In fact,
a superstationary factor Θ of the underlying set Ω of a symbolic dynamics
reflects properties of the system depending just on time order, but not on
the quantity of time, since Θ[N ] = Θ for any N , that is, Θ is invariant
under any choice of observing times N0 < N1 < . . .. It is a world of eter-
nity, where the notion of time length makes no sense. But, if the symbolic
dynamics comes from a geometrical setting on a compact metric space, then
the superstationary factor Ω[χ∞] is closely related to the infinitesimal geom-
etry behind it (Theorem 6), more precisely, to the infinitesimal move of the
point in the geometrical space how it crosses the boundary of its partition
used for the symbolic representation. If the boundary is complex e.g. for
the Thue-Morse word, then it has the full space AN as its superstationary
factor. If the dynamics is an irrational rotation on the circle partitioned by
d intervals with d ≥ 3, then the system has two different superstationary
factors corresponding to the infinitesimal move crossing the boundary up-
ward or downward. If the dynamics is the translation on (R/Z)2 partitioned
by a disc of radius δ, then the system has two different superstationary fac-
tors corresponding to the radius of the infinitesimal move, whether smaller
than δ or not. Thus, the world of eternity is closely related to the world of
instant.

We introduce basic notions and prove preliminary lemmas in Section 2.
We also define a constructive, stronger version of superstationary factors
in Section 2. We prove the main results in Section 3. We discuss the
infinitesimal geometry in Section 4. We discuss seven examples in Section
5.
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2 Basic notions and preliminary lemmas

Definition 1. Let Σi be infinite sets for i = 1, 2 and χi ∈ βΣi (i = 1, 2).
We define χ1 × χ2 ∈ β(Σ1 × Σ2) as

χ1 × χ2 = {U ⊂ Σ1 × Σ2; {x ∈ Σ1; Ux ∈ χ2} ∈ χ1},

where Ux := {y ∈ Σ2; (x, y) ∈ U}.

Note that this product operation is not symmetric between the first entry
and the second entry. That is, U ∈ χ1 × χ2 does not mean {(y, x); (x, y) ∈
U} ∈ χ2 × χ1. Moreover, the mapping (χ1, χ2) 7→ χ1 × χ2 is continuous in
χ1 but not continuous in χ2. In fact, {(x, y) ∈ N× N; x < y} ∈ χ× χ and
{(y, x) ∈ N×N; x < y} /∈ χ× χ hold for any χ ∈ βN \N, since any cofinite
set is in χ, but any finite set is not in χ.

Definition 2. For χ ∈ βΣ and k ≥ 1, define χk inductively by χ1 = χ and
χk = χk−1 × χ (k ≥ 2). Then, χk ∈ β(Σk).

Definition 3. For a finite sequence (σ1, . . . , σk) ∈ Σk, we define

Ω[(σ1, . . . , σk)] := {ω(σ1) . . . ω(σk) ∈ Ak; ω ∈ Ω} ⊂ Ak.

This mapping (σ1, . . . , σk) 7→ Ω[(σ1, . . . , σk)] has the natural extension as
a mapping from β(Σk) to the family of subsets of Ak, in the sense that
Ω[γ] = Λ for γ ∈ β(Σk) if

{(σ1, . . . , σk) ∈ Σk; Ω[(σ1, . . . , σk)] = Λ} ∈ γ.

Let χ ∈ βΣ. Then, Ω[χk] makes sense as a subset of Ak.

Definition 4. For any χ ∈ βΣ, we define Ω[χ∞] ⊂ AN as

Ω[χ∞] = {ω ∈ AN; ω(0)ω(1) . . . ω(k − 1) ∈ Ω[χk] for any k = 1, 2, . . .},

which turns out later to be the projective limit of Ω[χk] as k → ∞ by (1) of
Theorem 1. We call Ω[χ∞] for χ ∈ βΣ \ Σ the superstationary factor of Ω
at χ. This naming will be justified by Theorem 1.

Definition 5. A superstationary set Θ ⊂ AN is called a strong supersta-
tionary factor of Ω if there exist injections ϕk : N → Σ for any k = 1, 2, . . .
such that
(1) ϕ1(N) ⊃ ϕ2(N) ⊃ . . ., and
(2) Ω ◦ ϕk is a k-superstationary set satisfying that

Ω ◦ ϕk[{0, 1, . . . , k − 1}] = Θ[{0, 1, . . . , k − 1}].

Moreover, a strong superstationary factor Θ of Ω is called attainable if in
the above, ϕk does not depend on k = 1, 2, . . ..
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Definition 6. For a nonempty subset G of a compact Hausdorff space, the
set of accumulating points ofG (the closure ofG) is denote byG′. Clearly, G′

is a closed (possibly, empty) set. We denote G(0) = G and G(i) = (G(i−1))′

for i = 1, 2, . . .. The accumulation degree of G, denoted by acdegG is defined
to be inf{d; G(d+1) = ∅}, where we define acdegG = ∞ if G(d+1) 6= ∅ for
any d ∈ N.

Theorem 3. ([7]) If Ω is a uniform set, then all strong superstationary
factors of Ω are attainable.

Theorem 4. ([5]) If #A = 2 and acdegΩ < ∞, then there exists an attain-
able strong superstationary factor of Ω.

We’ll prove the following theorem in Section 3.

Theorem 5.
(1) Let χ ∈ βΣ\Σ. A strong superstationary factor of Ω such that (1), (2) in
Definition 5 hold with ϕk(N) ∈ χ for any k = 1, 2, . . . is unique and coincides
with Ω[χ∞], if it exists.
(2) The set of χ ∈ βΣ \ Σ such that there exists a strong superstationary
factor of Ω as above with χ is dense in βΣ \ Σ.

Definition 7. We denote Ω((χ)) = Θ if Θ is the strong superstationary
factor of Ω as in (1) of Theorem 5 with χ ∈ βΣ \ Σ. The set of χ such
that Ω((χ)) exists is denoted by DS(Ω). Then, DS(Ω) is the domain of the
mapping χ 7→ Ω((χ)) and is dense in βΣ \ Σ by Theorem 5.

Lemma 1. For any χ ∈ βΣ and positive integers k, l, we have χk+l =
χk × χl.

Proof We use induction on k + l. If k + l = 2, our statement is clear.
Assume that k + l ≥ 3 and our statement holds for the case k + l − 1. If
l = 1, then our statement follows from Definition 2. If l ≥ 2, then we have

χk+l = χk+l−1 × χ = (χk × χl−1)× χ

by induction hypothesis. Hence, U ∈ χk+l if and only if

{(x, y) ∈ Σk × Σl−1; {z ∈ Σ; (x, y, z) ∈ U} ∈ χ} ∈ χk × χl−1.

By the definition of χk × χl−1, this is equivalent to

{x ∈ Σk; {y ∈ Σl−1; {z ∈ Σ; (x, y, z) ∈ U} ∈ χ} ∈ χl−1} ∈ χk.

Then, by Definition 2, this is equivalent to

{x ∈ Σk; {(y, z) ∈ Σl−1 × Σ; (x, y, z) ∈ U} ∈ χl} ∈ χk,

which turns out to be equivalent to U ∈ χk × χl.
Thus, we have χk+l = χk × χl. 2
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Lemma 2. For any χ ∈ βN \ N, U ∈ χ and a positive integer k, we have

∆U
k := {(x1, . . . , xk) ∈ Uk; x1 < . . . < xk} ∈ χk.

Particularly,

∆k = {(x1, . . . , xk) ∈ Nk; x1 < . . . < xk} ∈ χk.

Proof We prove by induction in k. For k = 1, our result is clear since
∆U

1 = U ∈ χ. Let k ≥ 2 and assume that our result holds for k − 1. Take
any x = (x1, . . . , xk−1) ∈ ∆U

k−1. Since

(∆U
k )

x = {y ∈ U ; y > xk−1} = U \ {z ∈ N; z ≤ xk−1},

we have (∆U
k )

x ∈ χ. Since this holds for any x ∈ ∆U
k−1, ∆

U
k ∈ χk holds by

induction hypothesis. Thus, ∆U
k ∈ χk for any positive integer k. 2

Recall that we identify a subset S = {s1 < . . . < sk} ⊂ N with the
increasing sequence S = (s1, . . . , sk) ∈ Nk.

Lemma 3. For any χ ∈ βN \ N, U ∈ χ and k = 1, 2, . . ., there exists
S = {x1 < . . . < xk} ⊂ U such that Ω[χk] = Ω[S].

Proof Take any V ⊂ Nk with V ∈ χk satisfying that Ω[x] = Ω[χk] for any
x ∈ V . Since χk is a ultrafilter and ∆U

k ∈ χk by Lemma 2, V ∩ ∆U
k ∈ χk

and is a nonempty set. Take any (x1, . . . , xk) ∈ V ∩∆U
k and let S := {x1 <

. . . < xk} ⊂ U . Then, we have Ω[χk] = Ω[(x1, . . . , xk)] = Ω[S]. 2

Let S = {s1 < . . . < sk} ⊂ {1, 2, . . . , l} with positive integers k ≤ l. The
projection πl,S : Σl → Σk is defined by

πl,S(x1, x2, . . . , xl) = (xs1 , . . . , xsk)

for any (x1, x2, . . . , xl) ∈ Σl.

Lemma 4. Let χ ∈ βΣ and S = {s1 < . . . < sk} ⊂ {1, 2, . . . , l}.
(1) For any V ∈ χk, we have π−1

l,S (V ) ∈ χl.

(2) For any U ∈ χl, we have U [S] = πl,S(U) ∈ χk.

Proof (1) We use induction on l. If l = 1, our statement is clear. Assume
that l ≥ 2 and our statement holds for l − 1.
Case 1: s1 6= 1. Since π−1

l,S (V ) = Σ×π−1
l−1,S−1(V ) and π−1

l−1,S−1(V ) ∈ χl−1 by

induction hypothesis, we have π−1
l,S (V ) ∈ χl, where S−1 = {s1−1, . . . , sk−1}.

Case 2: s1 = 1. For x ∈ Σ, we have π−1
l,S (V )x = π−1

l−1,S′−1(V
x), where

S′ = {s2 < . . . < sk}. By induction hypothesis, π−1
l−1,S′−1(V

x) ∈ χl−1 if

V x ∈ χk−1. Since the set of x ∈ Σ such that V x ∈ χk−1 is in χ, the set of
x ∈ Σ such that π−1

l,S (V )x ∈ χl−1 is in χ. This implies that π−1
l,S (V ) ∈ χl.
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(2) We use induction on l. If l = 1, our statement is clear. Assume that
l ≥ 2 and our statement holds for l − 1. Let U ∈ χl.
Case 1: s1 6= 1. Since {x ∈ Σ; Ux ∈ χl−1} ∈ χ, there exists x ∈ Σ such
that Ux ∈ χl−1. Since Ux[S − 1] ⊂ U [S] and Ux[S − 1] ∈ χk by induction
hypothesis, we have U [S] ∈ χk.
Case 2: s1 = 1. In this case, for x ∈ Σ, we have U [S]x = Ux[S′ − 1],
where S′ = {s2 < . . . < sk}. By induction hypothesis, Ux[S′ − 1] ∈ χk−1 if
Ux ∈ χl−1. Since the set of x ∈ Σ such that Ux ∈ χl−1 is in χ, the set of
x ∈ N such that Ux[S′ − 1] ∈ χk−1 is in χ. Since U [S]x = Ux[S′ − 1], this
implies that U [S] ∈ χk. 2

Lemma 5. Let χ ∈ βΣ and l be a positive integer. For any k = 1, 2, . . . , l,
let Vk ∈ χk. Then, there exists U ∈ χl such that U [S] ⊂ Vk for any k =
1, 2, . . . , l and S ⊂ {1, 2, . . . , l} with #S = k.

Proof By Lemma 4, π−1
l,S (Vk) ∈ χl holds for any k = 1, 2, . . . , l and S ⊂

{1, 2, . . . , l} with #S = k. Hence,

U :=
l∩

k=1

∩
S⊂{1,2,...,l},#S=k

π−1
l,S (Vk)

has the desired property. 2

3 Proofs of the main results

We always assume that Ω ⊂ AΣ is a nonempty set.

Proof of Theorem 1
(1) Let χ ∈ βΣ and k = 1, 2, . . .. Then, there exists U ∈ χk+1 such that

Ω[S] = Ω[χk+1] =: Ξ for any S ∈ U . Let π : Σk+1 → Σk be the projection
to the first k coordinates. Then, by Lemma 4, π(U) ∈ χk and Ω[π(S)] = Ξ′

holds for any S ∈ U , where Ξ′ is the restriction of Ξ to the first k coordinates.
Since {π(S); S ∈ U} = π(U) ∈ χk, this implies that Ξ′ = Ω[χk].

(2) By (1), the restriction of Ω[χ∞] to the first k coordinates coincides with
Ω[χk]. Take any S = {s1 < . . . < sk} ⊂ N. Take K > sk. Then, there exists
U ∈ χK such that Ω[x] = Ω[χK ] for any x ∈ U . Then, we have Ω[χ∞][S] =
Ω[χK ][S] = Ω[x][S] = Ω[x ◦ S] for any x = (x0, . . . , xK−1) ∈ U , where
x◦S = (xs1 , . . . , xsk) ∈ Σk. Let U ◦S = {x◦S; x ∈ U}. Then by Lemma 4,
U ◦S ∈ χk. Therefore, we have Ω[χ∞][S] = Ω[χk] = Ω[χ∞][{0, 1, . . . , k−1}],
and hence, Ω[χ∞] is k-superstationary. Since k = 1, 2, . . . is arbitrary and
Ω[χ∞] is a closed set, Ω[χ∞] is superstationary.

(3) If χ ∈ βΣ is a principal ultrafilter considered as an element in Σ, then
χk = (χ, . . . , χ) ∈ Σk and

Ω[χk] = Ω[(χ, . . . , χ)] = {ak; a ∈ Ω[χ]}.
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Thus, Ω[χ∞] = {a∞; a ∈ Ω[χ]}. 2

Proof of Theorem 2
If Θ = Θ[χ∞], then by Theorem 1, Θ is a superstationary set.
Conversely, assume that Θ is a superstationary set. Take any χ ∈ βN \N,

U ∈ χ and k = 1, 2, . . .. Then by Lemma 3, there exists S = {x1 < . . . <
xk} ⊂ U such that Θ[χk] = Θ[S]. Then, we have

Θ[χ∞][{0, 1, . . . , k − 1}] = Θ[χk] = Θ[S] = Θ[{0, 1, . . . , k − 1}],

where the last equality follows from the fact that Θ is k-superstationary.
Since this holds for any k = 1, 2, . . . and Θ is a closed set, we have Θ[χ∞] =
Θ. 2

Proof of Theorem 5
(1) Let Θ be a strong superstationary factor of Ω such that ϕk : N → Σ

satisfying the conditions (1), (2) of Definition 5 together with ϕk(N) ∈ χ for
any k = 1, 2, . . . with χ ∈ βΣ \ Σ.

To prove Ω[χ∞] = Θ, it is sufficient to prove Ω[χk] = Θ[{0, 1, . . . , k − 1}]
for any k = 1, 2, . . .. Define ∆ϕk

i ⊂ Σi (i = 1, . . . , k) by

∆ϕk
i = {(ϕk(x1), . . . , ϕk(xi)); {x1 < . . . < xi} ⊂ N}.

We have ∆ϕk
1 = ϕk(N) ∈ χ. Since for any ξ = (ϕk(x1), . . . , ϕk(xi−1)) ∈

∆ϕk
i−1, we have

{σ ∈ Σ; (ξ, σ) ∈ ∆ϕk
i } = {ϕk(x); x > xi−1} ∈ χ

as {ϕk(x); x > xi−1} = ∆ϕk
1 \F with a finite set F . Hence, ∆ϕk

i ∈ χi follows
from ∆ϕk

i−1 ∈ χi−1. Thus, we have ∆ϕk
k ∈ χk by induction on i.

Since

Ω[(ϕk(x1), . . . , ϕk(xk))] = Ω ◦ ϕk[{x1, . . . xk}]
= Ω ◦ ϕk[{0, 1, . . . , k − 1}] = Θ[{0, 1, . . . , k − 1}]

holds for any {x1 < . . . < xk} ⊂ N, we have

{(σ1, . . . , σk) ∈ Σk; Ω[(σ1, . . . , σk)] = Θ[{0, 1, . . . , k − 1}]} ⊃ ∆ϕk
k ∈ χk.

Hence, Ω[χk] = Θ[{0, 1, . . . , k− 1}] holds for any k = 1, 2, . . ., which implies
that Ω[χ∞] = Θ.

(2) Let φ : N → Σ be any injection. Then, Ω ◦ φ is a nonempty subset of
AN. By Lemma 2 in [7], there exist a superstationary set Θ and a sequence
N 1 ⊃ N 2 ⊃ . . . of infinite subsets of N such that Ω ◦ φ[N k] (k = 1, 2, . . .) is
a k-superstationary set satisfying that

Ω ◦ φ[N k][{0, 1, . . . , k − 1}] = Θ[{0, 1, . . . , k − 1}].
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Actually, N 1 ⊃ N 2 ⊃ . . . such that Ω ◦ φ[N k] (k = 1, 2, . . .) is a k-
superstationary set exist by the Infinitary Ramsey Theorem [9], and Θ is
defined as

Θ =

∞∩
l=1

∞∪
k=l

Ω ◦ φ[N k].

Let ϕk : N → Σ be the injection such that ϕk(n) = φ(Nk
n) (∀n ∈ N),

where N k = {Nk
0 < Nk

1 < . . .}. Then, it follows that ϕk (k = 1, 2, . . .)
are injections satisfying (1), (2) of Definition 5. Let χ be any element in
βΣ \ Σ such that ϕk(N) ∈ χ for any k = 1, 2, . . .. Such χ exists since
ϕk(N) (k = 1, 2, . . .) is a decreasing sequence of infinite subsets of Σ. By
(1), this implies that Θ = Ω[χ∞] is a strong superstationary factor of Ω.
Moreover, since ϕk(N) ⊂ φ(N) for any k = 1, 2, . . . and ϕk(N) ∈ χ, we have
φ(N) ∈ χ. Since φ(N) can be any countably infinite subset of Σ, the set of
χ as this is dense in βΣ \ Σ. 2

4 Infinitesimal geometry and dynamical imbed-
ding

Let X,Y be infinite sets and F : X → Y be a mapping. For χ ∈ βX, define
F (χ) ∈ βY by

F (χ) = {U ⊂ Y ; F−1U ∈ χ}. (4.1)

Lemma 6. Let Xi, Yi (i = 1, 2) be infinite sets and Fi : Xi → Yi (i = 1, 2)
be mappings. Let χi ∈ βXi (i = 1, 2). Then, we have (F1 × F2)(χ1 × χ2) =
F1(χ1)× F2(χ2).

Proof By definition, U ∈ (F1 × F2)(χ1 × χ2) if and only if

{(x1, x2) ∈ X1 ×X2; (F1(x1), F2(x2)) ∈ U} ∈ χ1 × χ2.

This is equivalent to

{x1 ∈ X1; {x2 ∈ X2; (F1(x1), F2(x2)) ∈ U} ∈ χ2} ∈ χ1,

and hence,

{x1 ∈ X1; {x2 ∈ X2; F2(x2) ∈ UF1(x1)} ∈ χ2} ∈ χ1.

This holds if and only if {x1 ∈ X1; F−1
2 UF (x1) ∈ χ2} ∈ χ1, and hence,

{x1 ∈ X1; UF1(x1) ∈ F2(χ2)} ∈ χ1.

This is equivalent to

{x1 ∈ X1; F1(x1) ∈ {t ∈ Y1; U t ∈ F2(χ2)}} ∈ χ1,

and hence,
{t ∈ Y1; U t ∈ F2(χ2)} ∈ F1(χ1).

Thus, U ∈ (F1 × F2)(χ1 × χ2) if and only if U ∈ F1(χ1)× F2(χ2). 2
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Corollary 1. Let X, Y be infinite sets, F : X → Y be a mapping and
χ ∈ βX. Then, we have (F k)(χk) = (F (χ))k for k = 2, 3, . . ..

Let X be a compact metric space with metric ρX and #X = ∞. Let
χ ∈ βX. Let ϕ be a mapping Wk → Y , where k = 1, 2, . . ., Wk ∈ χk and Y
is a compact metric space. Then, p ∈ Y is determined so that

{(x1, . . . , xk) ∈ Wk; ρY (ϕ(x1, . . . , xk), p) < ε} ∈ χk

for any ε > 0. This p is denoted by ϕ(χk). These values ϕ(χk) for various
k = 1, 2, . . ., Wk, Y and ϕ are called the infinitesimal geometry of X at
χ. For example, let ϕ = idX : X → X be such that ϕ(x) = x (∀x ∈ X).
Then, idX(χ) is the point x0 ∈ X such that χ converges to it in the sense
that {x ∈ X; ρX(x, x0) < ε} ∈ χ for any ε > 0. If ϕ : Wk → Y with
(x0, . . . , x0) ∈ Wk ∈ χk is continuous at (x0, . . . , x0), where x0 = idX(χ),
then it is clear that ϕ(χk) = ϕ(x0, . . . , x0). On the other hand, if ϕ is not
continuous at (x0, . . . , x0), then ϕ(χk) takes one of the limiting values of
ϕ as (x1, . . . , xk) → (x0, . . . , x0). In particular, if Y is a finite set, then
ϕ(χk) = y is equivalent to {(x1, . . . , xk) ∈ Wk; ϕ(x1, . . . , xk) = y} ∈ χk.

For another example, let X be a compact Riemanian manifold and χ ∈
βX \ X. Let W be a small neighborhood of idX(χ). For distinct points
x1, x2 ∈ W , let ϕ(x1, x2) be the unit vector ~x2x1/|| ~x2x1|| with respect to a
local ortho-normal coordinate. Then, a unit vector v = ϕ(χ2) in the tangent
space of X at idX(χ) is determined so that

{(x1, x2) ∈ X ×X; || v − ~x2x1/|| ~x2x1|| || < ε} ∈ χ2

for any ε > 0, which we call the tangent vector of χ.
Let f : X → X be a continuous map so that (X, f) is a topological

dynamical system. Let x0 ∈ X satisfy that {fn(x0); n ∈ N} is dense in X.
Let κ : X → A and ω0 ∈ AN be such that ω0(n) = κ(fn(x0)) (∀n ∈ N).
Let Ω ⊂ AN be the closure of {Tnω0; n ∈ N}, where T is the shift. The
symbolic dynamics (Ω, T ) is called the symbolic representation of (X, f)
through κ and x0. An imbedding F : N → X is defined by F (n) = fn(x0),
which we call a dynamical imbedding of N into (X, f). Let χ ∈ βN and
χ̃ := F (χ) ∈ βX. By Corollary 1, we have χ̃k = (F k)(χk) for k = 1, 2, . . ..
Then, the superstationary factor Ω[χ∞] is closely related to the infinitesimal
geometry of X at χ̃. In fact, we have

Theorem 6. In the setting as above and for k = 1, 2, . . ., let

ϕ(x1, . . . , xk) = {(κ(fn(x1)), . . . , κ(f
n(xk))); n ∈ N} ⊂ Ak.

Then, we have Ω[χk] = ϕ(χ̃k). Moreover, if the family {fn; n ∈ N} is
equicontinuous and κ is continuous, then ϕ(χ̃k) ⊂ {ak; a ∈ A}.
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Proof Since the image of ϕ is a finite set, we have

{(x1, . . . , xk) ∈ Xk; ϕ(x1, . . . , xk) = ϕ(χ̃k)} ∈ χ̃k.

This is equivalent to

{(n1, . . . , nk) ∈ Nk; ϕ(F (n1), . . . , F (nk)) = ϕ(χ̃k)} ∈ χk.

On the other hand, since

ϕ(F (n1), . . . , F (nk))

= {(κ(fn+n1(x0)), . . . , κ(f
n+nk(x0))); n ∈ N}

= {ω0(n+ n1) . . . ω0(n+ nk); n ∈ N}
= {ω(n1) . . . ω(nk); ω ∈ {Tnω0; n ∈ N}}
= {ω(n1) . . . ω(nk); ω ∈ Ω}
= Ω[(n1, . . . , nk)],

we have Ω[χk] = ϕ(χ̃k).
Assume that the family {fn; n ∈ N} is equicontinuous and κ is con-

tinuous. Since the image of κ is a finite set, there exists δ > 0 such
that if ρX(x1, x2) < δ, then κ(fn(x1)) = κ(fn(x2)) holds for any n ∈ N.
Let Vδ = {x ∈ X; ρ(x, idX(χ̃)) < δ). Then, V k

δ ∈ χ̃k holds. Since
κ(fn(x1)) = . . . = κ(fn(xk)) holds for any n ∈ N if (x1, . . . , xk) ∈ V k

δ ∈ χ̃k,
we have ϕ(χ̃k) ⊂ {ak; a ∈ A}. 2

In Example 7 of the next section, we consider (X, f) with X = (R/Z)2
and f(x) = x + ~f (mod 2), where ~f = (f1, f2) ∈ R2 satisfies that 1, f1, f2
are linearly independent over the rational field. We imbed N into (X, f) as
F (n) = (nf1, nf2) (mod 1). For three distinct points x1, x2, x3 ∈ X which
are close enough to each other, let R(x1, x2, x3) be the radius of the circle
passing x1, x2, x3, possibly ∞. Then, χ ∈ βX \ X determines q ∈ (0,∞]
possibly with ±0 such that

{(x1, x2, x3) ∈ X3; q < R(x1, x2, x3) < q + ε} ∈ χ3

for any ε > 0,

{(x1, x2, x3) ∈ X3; R(x1, x2, x3) = q} ∈ χ3,

or
{(x1, x2, x3) ∈ X3; q − ε < R(x1, x2, x3) < q} ∈ χ3

for any ε > 0. We define R(χ3) to be q + 0, q or q − 0 corresponding to the
three cases, and call it the radius of χ. Moreover, the osculating circle of
χ is determined as ϕ(χ3) for ϕ(x1, x2, x3) which is, by definition, the circle
determined by three distinct points x1, x2, x3 ∈ X. Then, the osculating
circle of χ passes idX(χ) and has radius q as above.
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In Examples 3 and 6, we consider (X, f) with X = Z2 and f(x) =
x + 1, where Z2 is the 2-adic compactification of Z as the additive group.
It is identified with {0, 1}N, and n ∈ N is imbedded into {0, 1}N as the
element e0(n)e1(n)e2(n) . . . ∈ {0, 1}N satisfying that n =

∑∞
i=0 ei(n)2

i,
while a negative integer −n − 1 with n ∈ N is imbedded as the element
(1 − e0(n))(1 − e1(n))(1 − e2(n)) . . . ∈ {0, 1}N. We denote this imbedding
by F : Z → {0, 1}N. The multiplication by 2n for n ∈ N also makes sense in
{0, 1}N. For θ ∈ {0, 1}N \ {0}, τ(θ) denotes the maximum n ∈ N such that
2n is a multiple of θ, that is, 0n1 is a prefix of θ. To be complete, define
τ(0∞) = ∞.

Definition 8. For ω ∈ {0, 1}N and S = {s1 < s2 < . . .} ⊂ N with #S < ∞
or #S = ∞, define

λ(S, ω) = sup
m∈N

∑
i

(ω(si +m)− ω(si+1 +m))2,

where
∑
i

denotes

k−1∑
i=1

if #S = k < ∞ and

∞∑
i=1

if #S = ∞.

Theorem 7. Let ω0 ∈ {0, 1}N and Ω be {Tnω0; n ∈ N} ⊂ {0, 1}N or its
closure, where T : {0, 1}N → {0, 1}N is the shift. For any χ ∈ βN \ N, the
following statements hold.
(1) Ω[χ∞] = {0, 1}N holds if there exists a sequence (Uk ∈ χk; k = 1, 2, . . .)
such that

lim
k→∞

inf
S∈Uk∩∆k

λ(S, ω0) = ∞,

where
∆k := {(s1, . . . , sk) ∈ Nk; s1 < . . . < sk}

and (s1, . . . , sk) ∈ Uk ∩∆k is identified with {s1 < . . . < sk} ⊂ N.

(2) Ω[χ∞] 6= {0, 1}N holds if there exists U ∈ χ such that λ(U, ω0) < ∞.

Proof Let ω0 ∈ {0, 1}N and Ω = {Tnω0; n ∈ N}. The proof for the
closure of Ω is the same as the proof for Ω.

(1) Assume that Ω[χ∞] 6= {0, 1}N. Then, there exists a nonempty finite
set Ξ ⊂ {0, 1}+ such that Ω[χ∞] = P(Ξ). Take ξ ∈ Ξ such that ξ ∈ {0, 1}l
for some l ∈ N.

Take an arbitrary sequence (Uk ∈ χk; k = 1, 2, . . .). Then, for any k =
1, 2, . . ., there exists S ∈ Uk ∩ ∆k such that Ω[χk] = Ω[S]. Take such
S = (s1 < . . . < sk) ∈ Uk. If λ(S, ω0) ≥ 2l, then there exists m ∈ N such
that

λ(S,B) =
k−1∑
i=1

(ω0(si +m)− ω0(si+1 +m))2 ≥ 2l.
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This implies that there exist

1 ≤ i1 < i1 + 1 < i2 < i2 + 1 < . . . < il < il + 1 ≤ 2l

such that {ω0(sij + m), ω0(sij+1 + m)} = {0, 1} (∀j = 1, . . . , l). There-
fore, any element in {0, 1}l is a super-subword of ω0(s1 +m) . . . ω0(sk +m).
Hence, (Tmω0)[S] contains ξ as a super-subword. Since Ω[S] = Ω[χk], this
contradicts with Ω[χ∞] = P(Ξ). This implies that for any k = 1, 2, . . ., there
exists S ∈ Uk ∩∆k such that λ(S, ω0) < 2l. Thus,

lim
k→∞

inf
S∈Uk∩∆k

λ(S, ω0) < 2l

for any sequence (Uk ∈ χk; k = 1, 2, . . .), which implies (1).
(2) Assume that there exists U ∈ χ such that λ(U,ω0) =: l < ∞. By

Lemma 3, for any k = 1, 2, . . ., there exists S = {s1 < . . . < sk} ⊂ U such
that Ω[χk] = Ω[S]. Let k = 2(l + 1). Since

Ω[S] = {ω0(s1 +m) . . . ω0(sk +m) ∈ {0, 1}k; m ∈ N},

and λ(S, ω0) ≤ λ(U,ω0) = l, (01)l+1 /∈ Ω[S] = Ω[χk]. Thus, Ω[χ∞] 6=
{0, 1}N. 2

5 Examples

We give seven examples of dynamical systems, where the superstationary
factors are obtained. They were more or less discussed in earlier articles.

Example 1. ([4]) Let Z be the set of integers. We call ω ∈ {0, 1}Z increasing
if ω(n) ≤ ω(m) holds for any n,m ∈ Z with n ≤ m. Let

Ω = {ω ∈ {0, 1}Z; ω is either increasing or
∑
n∈Z

ω(n) ≤ 1}.

Then, we have DS(Ω) = βZ \ Z and

Ω[χ∞] = Ω((χ)) =

{
P(101, 110) if χ ∈ U(N) \ Z
P(101, 011) if χ ∈ U(Z−) \ Z.

Moreover, they are attainable.
In fact, take any χ ∈ U(N)\Z and let ϕ : N → Z be the injection such that

ϕ(n) = n (∀n ∈ N). Then, we have ϕ(N) = N ∈ χ and Ω ◦ ϕ = P(101, 110).
Hence, P(101, 110) is an attainable strong superstationary factor of Ω at χ.

On the other hand, take any χ ∈ U(Z−) \ Z and let ϕ : N → Z be the
injection such that ϕ(n) = −n − 1 (∀n ∈ N). Then, we have ϕ(N) = Z− ∈
χ and Ω ◦ ϕ = P(101, 011). Hence, P(101, 011) is an attainable strong
superstationary factor of Ω at χ.

These 2 superstationary sets are not isomorphic in the sense of [4].
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Example 2. ([7]) Let X = R/Z and f : X → X be f(x) = x+ α (mod 1),
where α is an irrational number. Let d ≥ 2 be an integer and A =
{0, 1, . . . , d − 1}. Let a0 < a1 < . . . < ad−1 < ad be real numbers such
that ad = a0 + 1. Define κ : X → A by

κ(x) = i if x ∈ [ai, ai+1) (mod 1) (i ∈ A).

Define an imbedding F : N → X by F (n) = nα (mod 1). For x ∈ X,
define ωx ∈ AN by ωx(n) = κ(x + nα) (∀n ∈ N). Let Ω be the closure of
{Tnω0; n ∈ N}. Then, it is clear that Ω is the closure of {ωx; x ∈ X}.

For d ≥ 3, define Ξ+, Ξ− ⊂ A+ by

Ξ+ = {ij ∈ A2; j 6= i and j 6= i+ 1 (mod d)}

and
Ξ− = {ij ∈ A2; j 6= i and j 6= i− 1 (mod d)}.

For d = 2, define
Ξ+ = Ξ− = {101, 010}.

Then, it holds that

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(Ξ−),P(Ξ+)}.

Moreover, they are attainable and DS(Ω) 6= βN \ N.
In fact, there exist increasing injections ϕi : N → N (i = 1, 2) and x0 ∈ X

such that
(1) x0 − δ < x0 + ϕ1(0)α < x0 + ϕ1(1)α < x0 + ϕ1(2)α < . . . < x0 (mod 1),
or
(2) x0 + δ > x0 + ϕ2(0)α > x0 + ϕ2(1)α > x0 + ϕ2(2)α > . . . > x0 (mod 1),
where δ = min{ai+1 − ai; i = 0, 1, . . . , d− 1}.

Then, it is easy to see that

Ω ◦ ϕ1 = P(Ξ+) and Ω ◦ ϕ2 = P(Ξ−).

Hence, P(Ξ+) and P(Ξ−) are attainable strong superstationary factors of
Ω. This implies that

{Ω((χ)); χ ∈ DS(Ω)} ⊃ {P(Ξ−),P(Ξ+)}. (5.1)

Let χ ∈ βN \ N and χ̃ = F (χ). Let x0 = idX(χ̃) as in Section 4. We
call χ̃ ∈ βX \X increasing if (idX(χ̃) − ε, idX(χ̃)) ∈ χ̃ for any ε > 0, and
decreasing if (idX(χ̃), idX(χ̃) + ε) ∈ χ̃ for any ε > 0. For any k = 1, 2, . . .,
let

U1
k = {(n1 < . . . < nk) ∈ Nk; x0 − δ0 < n1α < . . . < nkα < x0 (mod 1)},
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and

U2
k = {(n1 < . . . < nk) ∈ Nk; x0 + δ > n1α > . . . > nkα > x0 (mod 1)}.

Then, by the same argument as in the proof of (1) of Theorem 5, we can
prove that U1

k ∈ χk if χ̃ is increasing and U2
k ∈ χk if χ̃ is decreasing. Hence,

there exists (n1 < . . . < nk) ∈ U i
k (i = 1, 2) satisfying that

Ω[(n1 < . . . < nk)] = Ω[χk].

Moreover, the above (1) or (2) with x0 = idX(χ̃) and ϕi(j) = nj+1 (j =
0, 1, . . . , k − 1) is satisfied. Thus, we have

Ω[χk] = Ω ◦ ϕ1 = P(Ξ+)[{0, 1, . . . , k − 1}]

if χ̃ is increasing, and

Ω[χk] = Ω ◦ ϕ2 = P(Ξ−)[{0, 1, . . . , k − 1}]

if χ̃ is decreasing. Since k = 1, 2, . . . is arbitrary, we have

Ω[χ∞] =

{
P(Ξ+) if χ̃ is increasing
P(Ξ−) if χ̃ is decreasing

Thus, together with (5.1), we have

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(Ξ−),P(Ξ+)}.

Let us show that there exists χ ∈ βN \ N with χ /∈ DS(Ω). It is easy to
check that there exists χ ∈ βN\N such that χ ⊂ {U ⊂ N; acdegF (U) ≥ 2}.
Then, we prove that χ /∈ DS(Ω). Suppose to the contrary that χ ∈ DS(Ω).
Then, we must have Ω((χ)) = P(Ξ+) or P(Ξ−). This implies that for any
k = 1, 2, . . ., there exists an injection ϕk : N → N with acdegF (ϕk(N)) ≥ 2
such that Ω ◦ ϕk is k-superstationary and

Ω◦ϕk[{0, 1, . . . , k−1}] = P(Ξ+)[{0, 1, . . . , k−1}] or P(Ξ−)[{0, 1, . . . , k−1}].

We take k = 3. Since there exist infinitely many accumulating points of
F (ϕ3(N)), take two accumulating points y0, y1 of F (ϕ3(N)) with y0 6= y1.
Then, there exist x0 ∈ R and ε with 0 < ε < 1/2 such that

π((x0 − ε, x0 + ε)) + y0 ⊂ π([a0, a1))

and

π((x0 − ε, x0 + ε)) + y1 ⊂ π([ai, ai+1)) for some i ∈ A with i 6= 0,

where π is the natural projection R → R/Z. Hence, κ(x0 + nα) = 0 if
F (n) = π(nα) ∈ (y0− ε, y0+ ε) while κ(x0+nα) = i 6= 0 if F (n) = π(nα) ∈
(y1 − ε, y1 + ε).

16



Since y0 and y1 are accumulating points of F (ϕ3(N)), there exist nonneg-
ative integers n0 < n1 < n2 such that F (ϕ3(ni)) ∈ (y0−ε, y0+ε) for i = 0, 2
and F (ϕ3(n1)) ∈ (y1 − ε, y1 + ε). This implies that

κ(x0 + ϕ3(n0)α)κ(x0 + ϕ3(n1)α)κ(x0 + ϕ3(n2)α) = 0i0.

Thus, we have a contradiction that

0i0 ∈ Ω ◦ ϕ3[{n0, n1, n2}] = Ω ◦ ϕ3[{0, 1, 2}] ⊂ (P(Ξ+) ∪ P(Ξ−))[{0, 1, 2}].

Example 3. ([7]) Let X = Z2 = {0, 1}N be the 2-adic compactification of
Z and F : Z → X be the canonical imbedding as in Section 4. We identify
n ∈ N with F (n) ∈ {0, 1}N, sometimes denoting F (n) by n. Let f : X → X
be the addition by 1, that is, f(x) = x+ 1. Let τ : X → N ∪ {∞} be as in
Section 4 the maximum n such that 2n divides x.

Define κ : X → {0, 1} by

κ(x) =

{
0 if τ(x+ 1) is even
1 if τ(x+ 1) is odd

We define κ(−1) to be 0 or 1 arbitrary. The unique discontinuous point
of the function κ(x) is x = −1. For x ∈ X let ωx ∈ {0, 1}N be such that
ωx(n) = κ(fn(x)) (∀n ∈ N). Then, ω0 = 010001010100 . . . is called the
Toeplitz word. Let T : {0, 1}N → {0, 1}N be the shift and Ω ⊂ {0, 1}N be
the closure of {Tnω0; n ∈ N}. Thus, our system (Ω, T ) comes from (X, f)
through κ and 0.

Then, we have

{Ω[χ∞]; χ ∈ βN\N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(101, 110), P(010, 001)}.

Moreover, they are attainable and DS(Ω) 6= βN \ N.
In fact, let ϕ : N → N be an injection such that ϕ(n) = 22n+2 (∀n ∈ N).

Then, for any N ∈ N with τ(N + 1) = 2k + 1, where k ∈ N, we have

τ(N + 1 + ϕ(n)) =

{
2n+ 2 if n < k
2k + 1 if n ≥ k

(∀n ∈ N),

and for any N ∈ N with τ(N + 1) = 2k, where k ∈ N, we have

τ(N + 1 + ϕ(n))


= 2n+ 2 if n < k − 1
> 2k if n = k − 1
= 2k if n > k − 1

(∀n ∈ N),

where in the middle case, any value larger than 2k is possible.
Hence, (TNω0)◦ϕ for N ∈ N is either 0k1∞, 0∞ or 0k10∞ for some k ∈ N.

Therefore, Ω ◦ ϕ = P(101, 110).
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Now, let ϕ : N → N be an injection such that ϕ(n) = 22n+1 (∀n ∈ N).
Then, for any N ∈ N with τ(N + 1) = 2k, where k ∈ N, we have

τ(N + 1 + ϕ(n)) =

{
2n+ 1 if n < k
2k if n ≥ k

(∀n ∈ N),

and for any N ∈ N with τ(N + 1) = 2k + 1, where k ∈ N, we have

τ(N + 1 + ϕ(n))


= 2n+ 1 if n < k
> 2k + 1 if n = k
= 2k + 1 if n > k

(∀n ∈ N),

where in the middle case, any value larger than 2k + 1 is possible. Hence,
(TNω0) ◦ ϕ for N ∈ N is either 1k0∞, 1∞ or 1k01∞ for some k ∈ N. There-
fore, Ω ◦ ϕ = P(010, 001).

Thus, we have

{Ω((χ)); χ ∈ DS(Ω)} ⊃ {P(101, 110), P(010, 001)}, (5.2)

both factors being attainable.
Let χ ∈ βN \ N and χ̃ = F (χ). Let x0 = idX(χ̃). We call χ of even type

if τ(χ̃ − x0) ∈ {0, 2, 4, . . . ,∞}, and of odd type if τ(χ̃ − x0) ∈ {1, 3, 5, . . .}.
That is, χ is of even type if {n ∈ N; τ(n− x0) ∈ {0, 2, 4, . . . ,∞}} ∈ χ, and
of odd type if {n ∈ N; τ(n − x0) ∈ {1, 3, 5, . . .}} ∈ χ since N ∈ χ̃ and χ̃
restricted to N coincides with χ.

Without loss of generality, we assume that χ is of even type. By the same
reason as in the proof of (1) of Theorem 5, for any k = 1, 2, . . .,

Uk := {(n1 < . . . < nk) ∈ Nk; τ(ni − x0) is even for any

i = 1, . . . , k and τ(n1 − x0) < . . . < τ(nk − x0)} ∈ χk.

Hence, there exists (n1, . . . , nk) ∈ Uk such that Ω[χk] = Ω[(n1, . . . , nk)]. Let
ϕ : {0, 1, . . . , k − 1} → N be such that ϕ(i) = ni+1 (i = 0, 1, . . . , k − 1).

Then, for any N ∈ N with τ(N + 1 + x0) = 2l + 1, where l ∈ N, we have

τ(N + 1 + ϕ(i)) =

{
τ(ϕ(i)− x0) if τ(ϕ(i)− x0) < 2l + 1
2l + 1 if τ(ϕ(n)− x0) > 2l + 1

(i = 0, 1, . . . , k − 1),

and for any N ∈ N with τ(N + 1 + x0) = 2l, where l ∈ N, we have

τ(N + 1 + ϕ(i))


= τ(ϕ(n)− x0) if τ(ϕ(i)− x0) < 2l
> 2l if τ(ϕ(i)− x0) = 2l
= 2l if τ(ϕ(i)− x0) > 2l

(i = 0, 1, . . . , k − 1),

where in the middle case, any value larger than 2l is possible.
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Hence, (TNω0) ◦ ϕ for N ∈ N is either 0i1k−i (i = 0, 1, . . . , k − 1) or
0i10k−1−i (i = 0, 1, . . . , k − 1). Then,

Ω[χk] = Ω ◦ ϕ = P(101, 110)[{0, 1, . . . , k − 1}].

Therefore, we have Ω[χ∞] = P(101, 110). In the other case, we have
Ω[χ∞] = P(010, 001).

Hence, it holds for any χ ∈ βN \ N that

Ω[χ∞] =

{
P(101, 110) if χ is of even type
P(010, 001) if χ is of odd type.

Thus, together with (5.2), we have

{Ω[χ∞]; χ ∈ βN\N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(101, 110),P(010, 001)}.

There exists χ ∈ βN \ N satisfying χ ⊂ {U ⊂ N; acdegF (U) ≥ 2}, where
F : Z → {0, 1}N is the canonical imbedding. As before, we identify F (n)
with n. Then, we prove that χ /∈ DS(Ω). Suppose to the contrary that
χ ∈ DS(Ω). Then, we must have Ω((χ)) ∈ {P(101, 110), P(010, 001)}.
This implies that for any k = 1, 2, . . ., there exists an injection ϕk : N → N
with acdegϕk(N) ≥ 2 such that Ω ◦ ϕk is a k-superstationary set satisfying
either

Ω ◦ ϕk[{0, 1, . . . , k − 1}] = P(101, 110)[{0, 1, . . . , k − 1}]

or
Ω ◦ ϕk[{0, 1, . . . , k − 1}] = P(010, 001)[{0, 1, . . . , k − 1}].

We take k = 4. Since there exist infinitely many accumulating points of
ϕ4(N), take two accumulating points ω1, ω2 ∈ {0, 1}N of ϕ4(N) with ω1 6=
ω2. Let τ(ω2 − ω1) = r.

Take n1 < n2 < n3 < n4 in N such that τ(ϕ4(ni) − ω1) ≥ r + 2 for
i = 1, 3 and τ(ϕ4(ni) − ω2) ≥ r + 1 for i = 2, 4. Take N ∈ N such that
τ(N + 1 + ω1) = r + 1. Then, we have

τ(N + 1 + ϕ4(ni)) = τ(N + 1 + ω1 + ϕ4(ni)− ω1) = τ(N + 1 + ω1) = r + 1

for i = 1, 3, and

τ(N +1+ϕ4(ni)) = τ(N +1+ω1+ω2−ω1+ϕ4(ni)−ω2) = τ(ω2−ω1) = r

for i = 2, 4. Hence, we have

ω0(N+ϕ4(n1))ω0(N+ϕ4(n2))ω0(N+ϕ4(n3))ω0(N+ϕ4(n4)) = 0101 or 1010.

This implies that

0101 or 1010 ∈ Ω ◦ ϕ4[{n0, n1, n2, n3}] = Ω ◦ ϕ4[{0, 1, 2, 3}]
= P(101, 110)[{0, 1, 2, 3}] or P(010, 001)[{0, 1, 2, 3}],

which is impossible. Thus, χ /∈ DS(Ω).
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Example 4. Let 0 = L0 < L1 < L2 < . . . be sequence of positive in-
tegers such that Li+1 − Li → ∞ as i → ∞. For i = 0, 1, 2, . . ., let
Ωi = 0Li{0, 1}Li+1−Li0∞ and Ω = ∪∞

i=0Ωi. Then, Ω is clearly a closed
set with the full maximal pattern complexity [8]. On the other hand, it
holds that DS(Ω) 6= βN \ N and

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(11)}.

Moreover, P(11) is attainable.
For any function f : N → N and k = 1, 2, . . ., define

Nf = {(n1, . . . , nk) ∈ Nk; ni+1 > ni + f(ni) (i = 1, . . . , k − 1)}.

Then, for any χ ∈ βN \ N, it is easy to check that Nf ∈ χk.
Define f : N → N by f(n) = Li+1 − Li if n ∈ [Li, Li+1) (i = 0, 1, 2, . . .).

Then, there exists S = (n1, . . . , nk) ∈ Nf such that Ω[S] = Ω[χk]. For any
ω ∈ Ω and j = 1, . . . , k − 1, if ω(nj) = 1, then ω ∈ Ωi with nj ∈ [Li, Li+1).
Hence, for any h = i+1, . . . , k, ω(nh) = 0 holds since nh > nj +Li+1−Li ≥
Li+1. Therefore, we have Ω[χ

k] = P(11)[{0, 1, . . . , k−1}]. Since k = 1, 2, . . .
and χ ∈ βN \ N are arbitrary, we have

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(11)}.

Let an injection ϕ : N → N be such that #(ϕ(N)∩ [Li, Li+1)) ≤ 1 for any
i = 0, 1, 2, . . .. Then, it is clear that Ω ◦ ϕ = P(11). Take any χ ∈ βN \ N
with ϕ(N) ∈ χ. Then, P(11) coincides with Ω((χ)) and is attainable.

For U ⊂ N, let

ρ(U) = lim sup
n→∞

(1/N)#{n < N ; n ∈ U}.

Then, there exists χ ∈ βN \N such that χ ⊂ {U ⊂ N; ρ(U) > 0}. We prove
that χ /∈ DS(Ω). To the contrary suppose that χ ∈ DS(Ω). Then, we must
have Ω((χ)) = P(11). This implies that for any k = 1, 2, . . ., there exists an
injection ϕk : N → N with ρ(ϕk(N)) > 0 such that (2), (3) of Definition 5
hold for Θ = P(11). Here we take k = 3.

Take K ∈ N such that 2/K < ρ(ϕ3(N)). Then, there exist infinitely
many N ∈ N such that #(ϕ3(N) ∩ [NK, (N + 1)K)) ≥ 3. Hence, there
exist u, v, w ∈ N with 0 ≤ u < v < w < K and an infinitely many N ∈ N
such that N + {u, v, w} ∈ ϕ3(N). Take sufficiently large N as this. Then,
there exists i ∈ N such that either {N + u,N + v} ⊂ [Li, Li+1) or {N +
v,N +w} ⊂ [Li+1, Li+2). In the former case, we have 110 ∈ Ω◦ϕ3[{0, 1, 2}],
while in the latter case, we have 011 ∈ Ω ◦ ϕ3[{0, 1, 2}], contradicting that
Ω ◦ ϕ3[{0, 1, 2}] = P(11)[{0, 1, 2}]

Thus, χ /∈ DS(Ω) and DS(Ω) 6= βN \ N.
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Example 5. For i ≥ 0, let

Σi = {ω ∈ {0, 1}N;
∑
n∈N

ω(n) = i}.

For i ≥ 2, let

∆i = {ω ∈ {0, 1}N ; |n−m| ≥ 2i for any n,m ∈ N
such that n 6= m and ω(n) = ω(m) = 1}.

Let Ω = Σ0 ∪ Σ1 ∪
∪

i≥2(Σi ∩∆i). Then, Ω is a nonempty closed set such
that

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(∅)} (P(∅) = {0, 1}N),

and DS(Ω) = βN \ N. Moreover, P(∅) is not attainable.
In fact, take any χ ∈ βN \ N. Then for any k = 1, 2, . . ., there exists a

unique i = 0, 1, . . . , k − 1 such that {i + n2k; n ∈ N} ∈ χ. Let ϕk(n) =
i+ n2k (∀n ∈ N) with this i. Then, ϕk : N → N (k = 1, 2, . . .) are injections
satisfying (1), (2) of Definition 5 with Θ = P(∅). Moreover, ϕk(N) ∈ χ (k =
1, 2, . . .). Thus, Ω((χ)) = P(∅) for any χ ∈ βN \ N.

Let us prove that P(∅) is not attainable. Take any injection ϕ : N → N.
Let |ϕ(0) − ϕ(1)| < 2k. Then, 1k /∈ Ω ◦ ϕ[{0, 1, . . . , k − 1}]. Hence, Ω ◦ ϕ
cannot be P(∅). Thus, P(∅) is not attainable.

Example 6. ([2, 3]) Let ω0 = 0110100110010110 . . . ∈ {0, 1}N be the Thue-
Morse word. That is, ω0(n) = 0 if and only if the number of 1 in the 2-adic
representation of n is even. Let T : {0, 1}N → {0, 1}N be the shift and
Ω ⊂ {0, 1}N be the closure of {Tnω0; n ∈ N}.

Let X = Z2 = {0, 1}N be the 2-adic compactification of Z and F : Z → X
be the canonical imbedding as in Section 4. We identify n ∈ N with F (n) ∈
{0, 1}N, sometimes denoting F (n) by n. Let f : X → X be the addition by
1, that is, f(x) = x+ 1. Let γ be any nonprincipal ultrafilter on N. Define
κ : X → {0, 1} by

κ(x) =

{
0 if {n ∈ N;

∑n−1
i=0 x(i) is even} ∈ γ

1 if {n ∈ N;
∑n−1

i=0 x(i) is odd} ∈ γ.

Then, we have ω0(n) = κ(n) = κ(fn(0)) (n ∈ N). Thus, our system (Ω, T )
comes from (X, f) through κ and 0. Different from Example 3, our κ is
discontinuous everywhere.

Then, we have

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(∅)} (P(∅) = {0, 1}N),

and DS(Ω) 6= βN \ N. Moreover, P(∅) is attainable.
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In fact, let ϕ(n) = 22n (∀n ∈ N). For any k = 1, 2, . . . and ξ = ξ1ξ2 . . . ξk ∈
{0, 1}k, let Nξ = l22k +

∑k
i=1(1 − ξi)2

2(i−1), where l ∈ {0, 1} is determined
depending on ξ so that ω0(Nξ) = 0. Then, we have ω0(Nξ+ϕ(i−1)) = ξi for
any i = 1, 2, . . . , k. That is, ξ ∈ Ω ◦ ϕ[{0, 1, . . . , k − 1}] for any ξ ∈ {0, 1}k.
Hence, Ω ◦ ϕ[{0, 1, . . . , k − 1}] = {0, 1}k (k = 1, 2, . . .), which implies that
Ω ◦ ϕ = P(∅). Thus, P(∅) is an attainable strong superstationary factor of
Ω.

To prove Ω[χ∞] = P(∅) for any χ ∈ βN \N, we use the following lemmas
and Theorem 7. Recall the definition of τ in Section 4.

Lemma 7. For any n,m ∈ N such that n 6= m (mod 2), there exists i ∈
{1, 2, 3} such that

ω0(n) + ω0(n+ i) 6= ω0(m) + ω0(m+ i) (mod 2).

Proof Assume without loss of generality that n is odd and m is even.
Case 1: If τ(n+ 1) is odd, then ω0(n+ 1) = ω0(n) and ω0(m+ 1) 6= ω0(m).
Hence, ω0(n) + ω0(n+ 1) 6= ω0(m) + ω0(m+ 1) (mod 2).
Case 2: If τ(n+1) is even and τ(m+2) is odd, then ω0(n+2) = ω0(n) and
ω0(m+2) 6= ω0(m). Hence, ω0(n)+ω0(n+2) 6= ω0(m)+ω0(m+2) (mod 2).
Case 3: If τ(n+1) is even and τ(m+2) is even, then ω0(n+3) = ω0(n) and
ω0(m+3) 6= ω0(m). Hence, ω0(n)+ω0(n+3) 6= ω0(m)+ω0(m+3) (mod 2).
2

Lemma 8. For any set S = {s1 < s2 < . . . < sk} ⊂ N satisfying that
20si ≤ si+1 (i = 1, 2, . . . , k− 1), there exists m ∈ N, such that ω0(si +m) 6=
ω0(si+1 +m) for any i = 1, 2, . . . , k − 1.

Proof Note that ω0(m+n2e) = ω0(m)+ω0(n) (mod 2) for any m,n, e ∈ N
with m < 2e.

Let e2 = blog2 s2c. Since bs1/2e2c = 0 while bs2/2e2c = 1, by Lemma 7,
there exists i ∈ {1, 2, 3} such that

ω0(s1) + ω0(s1 + i2e2) 6= ω0(s2) + ω0(s2 + i2e2) (mod 2).

Hence, either ω0(s1) 6= ω0(s2) or ω0(s1 + i2e2) 6= ω0(s2 + i2e2) holds. Define
i2 = 0 in the former case, and i2 equal to the above i in the latter case.
Then, we have

ω0(s1 + i22
e2) 6= ω0(s2 + i22

e2)

for some i2 ∈ {0, 1, 2, 3}. Let e3 = blog2(s3+ i22
e2)c. Then again by Lemma

7, there exists i3 ∈ {0, 1, 2, 3} such that

ω0(s2 + i22
e2 + i32

e3) 6= ω0(s3 + i22
e2 + i32

e3).

On the other hand,

ω0(s1 + i22
e2 + i32

e3) = ω0(s1 + i22
e2) + ω0(i3)

6= ω0(s2 + i22
e2) + ω0(i3) = ω0(s2 + i22

e2 + i32
e3) (mod 2)
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In this way, we can prove that ω0(si + m) 6= ω0(si+1 + m) for any i =
1, 2, . . . , k − 1 with m = i22

e2 + i32
e3 + . . .+ ik2

ek . 2

Now, let us prove Ω[χ∞] = P(∅) for any χ ∈ βN \ N. By Theorem 7,
it is sufficient to prove that for any χ ∈ βN \ N, there exists a sequence
(Uk ∈ χk; k = 1, 2, . . .) such that for any S = (s1, . . . , sk) ∈ Uk ∩ ∆k,
λ(S, ω0) ≥ ck and ck → ∞ as k → ∞. This holds since

Uk := {(s1, . . . , sk) ∈ Nk; 20si ≤ si+1 (i = 1, 2, . . . , k − 1)} ∈ χk

and for any S ∈ Uk ∩∆k, we have λ(S, ω0) = k − 1 by Lemma 8.
Thus, we have

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(∅)}.

Take χ ∈ βN \N such that χ ⊂ {U ⊂ N; ρ(U) > 0} (see Example 4). We
prove that χ /∈ DS(Ω). To the contrary suppose that χ ∈ DS(Ω). Then,
we must have Ω((χ)) = P(∅). Then for any k = 1, 2, . . ., there exists an
injection ϕk : N → N with ρ(ϕk(N)) > 0 such that (1), (2) of Definition 5
hold for Θ = P(∅) and that ϕk(N) ∈ χ (k = 1, 2, . . .). Here we take k = 14.

Take K ∈ N such that 7/2K ≤ ρ(ϕ14(N)). Then, there exist infinitely
many N ∈ N such that #(ϕ14(N) ∩ [N2K , (N + 1)2K)) ≥ 7. Hence, we can
take seven elements u1, . . . , u7 ∈ {0, 1, . . . , 2K − 1} with u1 < . . . < u7 such
that N2K + {u1, . . . , u7} ⊂ ϕ14(N) for infinitely many N ∈ N. Take U1 and
U2 with U1 < U2 as this N . Let

nij = ui + Uj2
K (i = 1, . . . , 7 : j = 1, 2).

Note that they are distinct and all of them are in ϕ14(N), and hence, we
must have

Ω[{nij ; i = 1, . . . , 7 : j = 1, 2}] = {0, 1}14 (5.3)

by (2) of Definition 5. We prove that this is not true.
We represent N ∈ N as N = N1+N22

K , where N1, N2 ∈ N and N1 < 2K .
In this case, we denote N1 = (N)1 and N2 = (N)2. Then, we have

ω0(N) = ω0((N)1) + ω0((N)2) (mod 2).

If (N)1 + u4 < 2K , then we have

ω0(N + nij) = ω0((N)1 + ui) + ω0((N)2 + Uj) (mod 2)

for any i = 1, 2, 3, 4 and j = 1, 2. Let

p(N) = (ω0(N + nij); i = 1, 2, 3, 4 : j = 1, 2)

q(N) = (ω0((N)1 + ui); i = 1, 2, 3, 4 : j = 1, 2)

r(N) = (ω0((N)2 + Uj); i = 1, 2, 3, 4 : j = 1, 2)
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be the 8-dimensional vectors on Z/2Z. Then,

{q(N); N ∈ N} ⊂ linear space spanned by {ei1 + ei2; i = 1, 2, 3, 4},

where eij is the unit vector corresponding to the suffix (i, j) in the above.
Hence, dim{q(N); N ∈ N} ≤ 4. Similarly, dim{r(N); N ∈ N} ≤ 2. Since
p(N) = q(N) + r(N) holds if (N)1 + u4 < 2K , we have

dim{p(N); (N)1 + u4 < 2K}
≤ dim{q(N); (N)1 + u4 < 2K}+ dim{r(N); (N)1 + u4 < 2K}
≤ 4 + 2 = 6.

Hence,

dim{(ω0(N + nij); i = 1, 2, . . . , 7 : j = 1, 2); (N)1 + u4 < 2K}
≤ dim{p(N); (N)1 + u4 < 2K}

+dim{(ω0(N + nij); i = 5, 6, 7 : j = 1, 2); (N)1 + u4 < 2K}
≤ 6 + 6 = 12

Thus, the cardinality of the set of the vectors

{(ω0(N + nij); i = 1, 2, . . . , 7 : j = 1, 2); (N)1 + u4 < 2K}

is at most 212.
If (N)1 + u4 ≥ 2K , then we have

ω0(N + nij) = ω0((N)1 + ui − 2K) + ω0((N)2 + Uj + 1) (mod 2)

for any i = 4, 5, 6, 7 and j = 1, 2. By the same argument as above, we can
conclude that the number of vectors (ω0(N + nij); i = 1, . . . , 7 : j = 1, 2)
corresponding to N ∈ N satisfying (N)1 + u4 ≥ 2K is at most 212.

Therefore, the total number of vectors (ω0(N+nij); i = 1, . . . , 7 : j = 1, 2)
for N ∈ N is at most 212 + 212 = 213, which contradicts (5.3). Thus,
DS(Ω) 6= βN \ N.

Example 7. ([10]) Let f = (f1, f2) ∈ R2 be an irrational vector, that is,
1, f1, f2 are linearly independent over the rational field. Let x 7→ x + f be
the rotation in (R/Z)2 by f . For 0 < δ < 1/4, let D be the closed disc with
radius δ and center at the origin. For x ∈ (R/Z)2, define ωx ∈ {0, 1}N by
ωx(n) = 1 if and only if x+ nf ∈ D. Specially, ωx for x = (0, 0) is denoted
by ω0. Let Ω ⊂ {0, 1}N be the closure of {Tnω0; n ∈ N}. Then, we have

{Ω[χ∞]; χ ∈ βN \ N} = {Ω((χ)); χ ∈ DS(Ω)} = {P(101),P(0101, 1010)}.

These factors are attainable. Moreover, DS(Ω) 6= βN \ N.
Let X = (R/Z)2 and define an imbedding map F : N → X by F (n) = nf .

Let χ ∈ βN \N and χ̃ = F (χ) ∈ βX \X. Recall the notion of radius R(χ̃3)
in Section 4. We prove that
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Lemma 9.
(1) If R(χ̃3) ≥ δ, then Ω[χ∞] = P(101).
(2) If R(χ̃3) < δ, then Ω[χ∞] = P(0101, 1010).

Proof Let idX(χ̃) = x0 and W be the γ-neighborhood of x0 for a suffi-
ciently small γ > 0 (particularly, γ < δ/2). Let ṽ be the tangent vector
of χ̃ and for (n1 < n2) ∈ N2 with {F (n1), F (n2)} ⊂ W , let v(n1, n2) =

~F (n2)F (n1)/|| ~F (n2)F (n1)||. Then, either

V2 := {(n1 < n2) ∈ N2; {F (n1), F (n2)} ⊂ W and det(v(n1, n2), ṽ) ≤ 0} ∈ χ2

or

{(n1 < n2) ∈ N2; {F (n1), F (n2)} ⊂ W and det(v(n1, n2), ṽ) > 0} ∈ χ2

holds. Without loss of generality, we assume the former. That is, the set of
(n1 < n2) ∈ N2 such that the vector v(n1, n2) is rotated from the vector ṽ
within angle 0 to π in the positive direction is in χ2. For k = 4, 5, . . ., let

Vk = {(n1 < n2 < . . . < nk) ∈ Nk; ||F (nk)− x0|| < . . . < ||F (n1)− x0|| < γ,

and ||v(nk−1, nk)− ṽ|| ≤ . . . ≤ ||v(n1, n2)− ṽ|| < γ}.

Then, we have Vk ∈ χk. Let

V3 = {(n1 < n2 < n3) ∈ N3; R(F (n1), F (n2), F (n3)) ≥ δ}
V ′
3 = {(n1 < n2 < n3) ∈ N3; R(F (n1), F (n2), F (n3)) < δ}

Then, V3 ∈ χ3 if R(χ̃) ≥ δ and V ′
3 ∈ χ3 if R(χ̃) < δ.

By Lemma 5, for any k = 4, 5, . . ., there exists U ∈ χk satisfying that
U [S] ⊂ V2 for any S ⊂ {1, 2, . . . , l} with #S = 2, U [S] ⊂ V3 for any
S ⊂ {1, 2, . . . , l} with #S = 3 and U ⊂ Vk, if R(χ̃) ≥ δ. Similarly, there
exists U ′ ∈ χk satisfying that U ′[S] ⊂ V2 for any S ⊂ {1, 2, . . . , l} with
#S = 2, U ′[S] ⊂ V ′

3 for any S ⊂ {1, 2, . . . , l} with #S = 3 and U ′ ⊂ Vk, if
R(χ̃) < δ.

Then, the points F (n1), F (n2), . . . , F (nk) for (n1, n2, . . . , nk) in U or U ′

look like Fig. 1. In particular, F (n1)F (n2) . . . F (nk) is a convex poly-
gon (possibly, degenerate). Choosing γ small enough, we may assume that
3π/4 < ∠F (ni)F (ni+1)F (ni+2) ≤ π for any i = 1, 2, . . . , k − 2.

Assume that R(χ̃3) ≥ δ. Since U ∈ χk, there exists (n1 < n2 < . . . <
nk) ∈ U such that Ω[χk] = Ω[(n1, n2, . . . , nk)]. For any ω ∈ Ω, there exists
x ∈ X such that ω(n) = ωx(n) for n = 0, 1, . . . , nk. Hence,

ω(ni)ω(nj)ω(nh) = κ(x+ F (ni))κ(x+ F (nj))κ(x+ F (nh)),

where κ : X → A is such that κ(x) = 1 if x ∈ D and κ(x) = 0 otherwise.
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Figure 1: Converging points along χ̃

We prove that 101 for κ(x+F (ni))κ(x+F (nj))κ(x+F (nh)) with i < j < h
is impossible. Suppose to the contrary that this holds. Then, we have

F (ni) ∈ D − x , F (nj) /∈ D − x, F (nh) ∈ D − x

together with 3π/4 < ∠F (ni)F (nj)F (nh) ≤ π. Let the intersection of the
straight line passing F (ni), F (nh) and the circle ∂D − x be C and D. Let
E be the intersection of the circle ∂D−x and the line segment F (ni)F (nj).
Then, we have

3π/4 < ∠F (ni)F (nj)F (nh) < ∠CED < π.

Therefore, we have a contradiction that

δ =
CD

2 sin∠CED
>

F (ni)F (nh)

2 sin∠F (ni)F (nj)F (nh)

= radius of the circle determined by F (ni)F (nj)F (nh) ≥ δ.

Hence, we have Ω[(n1, n2, . . . , nk)] ⊂ P(101)[{0, 1, . . . , k − 1}] for any k =
1, 2, . . .. Conversely, any ξ = 0i1j0k−i−j for some i, j ∈ N with i + j ≤ k
is contained in Ω[(n1, n2, . . . , nk)] since F (n1)F (n2) . . . F (nk) is a convex
polygon with diameter less than δ (recall that γ < δ/2). Hence,

Ω[χk] = Ω[(n1, n2, . . . , nk)] = P(101)[{0, 1, . . . , k − 1}]

and we have Ω[χ∞] = P(101).
Now assume that R(χ̃3) < δ. At first, we prove that there does not exist

ω ∈ Ω and 1 ≤ i < j < h < l ≤ k such that

ω(ni)ω(nj)ω(nh)ω(nl) = 0101.
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Suppose to the contrary that such ω exists. Take x ∈ X such that ω(n) =
ωx(n) for n = 0, 1, . . . , nk. Hence,

ω(ni)ω(nj)ω(nh)ω(nl) = κ(x+F (ni))κ(x+F (nj))κ(x+F (nh))κ(x+F (nl)).

Then, we have

F (ni) /∈ D − x , F (nj) ∈ D − x, F (nh) /∈ D − x, F (nl) ∈ D − x.

Let A1, A2, A3, A4 be the intersections of the circle ∂D−x with the line seg-
ments F (ni)F (nj), F (nj)F (nh), F (nh)F (nl) and F (nl)F (ni), respectively.
Then, F (ni)F (nh) > A1A2. Since A1, A2, A3, A4 are on a circle, we have
∠A1A2A3 + ∠A3A4A1 = π. Moreover, since

∠A1A2A3 ≥ π − (π − ∠F (ni)F (nj)F (nh))− (π − ∠F (nj)F (nh)F (nl))

> π − (π − 3π/4)− (π − 3π/4) = π/2,

we have ∠A3A4A1 = π −∠A1A2A3 < π/2. On the other hand, since F (nj)
is inside the circle determined by A1, A2, A4, we have ∠F (ni)F (nj)F (nh) +
∠A2A4A1 ≥ π. Hence,

0 ≤ π − ∠F (ni)F (nj)F (nh) ≤ ∠A2A4A1 ≤ ∠A3A4A1 < π/2.

Thus, sin∠F (ni)F (nj)F (nh) ≤ sin∠A2A4A1, and hence, we have a contra-
diction that

δ =
A1A2

2 sin∠A2A4A1
<

F (ni)F (nh)

2 sin∠F (ni)F (nj)F (nh)

= radius of the circle determined by F (ni), F (nj), F (nh) < δ.

Thus, we have ω(ni)ω(nj)ω(nh)ω(nl) 6= 0101 for any ω ∈ Ω and 1 ≤ i <
j < h < l ≤ k. In the same way, we have ω(ni)ω(nj)ω(nh)ω(nl) 6= 1010 for
any ω ∈ Ω and 1 ≤ i < j < h < l ≤ k.

Hence, we have Ω[(n1, n2, . . . , nk)] ⊂ P(0101, 1010)[{0, 1, . . . , k−1}]. Note
that P(0101, 1010)[{0, 1, . . . , k − 1}] consists of words ω ∈ {0, 1}k such that
either ω = 0i1j0k−i−j for some i, j ∈ N with i + j ≤ k or ω = 1i0j1k−i−j

for some i, j ∈ N with i + j ≤ k. We have 0i1j0k−i−j ∈ Ω[(n1, n2, . . . , nk)]
since F (n1)F (n2) . . . F (nk) is a convex polygon with diameter less than δ.
Moreover, 1i0j1k−i−j ∈ Ω[(n1, n2, . . . , nk)] holds in our case since if we take
x ∈ X such that the points F (ni) and F (ni+j+1) are on the circle ∂D − x
and the center of the circle is in the same side of F (n1) or F (nk) but in the
opposite side of F (ni+1) separated by the line F (ni)F (ni+j+1), then

{F (ni+1), . . . , F (ni+j)} ∩ (D − x) = ∅

and
{F (n1), . . . , F (ni)} ∪ {F (ni+j+1), . . . , F (nk)} ⊂ D − x
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since R(χ̃3) < δ. Hence, Ω[(n1, n2, . . . , nk)] = P(0101, 1010)[{0, 1, . . . , k −
1}]. Thus, we have Ω[χ∞] = P(0101, 1010), which completes the proof. 2

Thus, we have proved that

{Ω[χ∞]; χ ∈ βN \ N} = {P(101),P(0101, 1010)}.

Now, we prove that both factors are attainable.
For n ∈ N, let xn = (c2−n, d2−2n) ∈ (R/Z)2 and define an increasing

injection ϕ : N → N such that ||ϕ(n)f − xn|| < ε2−2n (∀n ∈ N). Then, it is
easy to see that for any 0 < δ0 < δ1 < ∞, there exist c > 0, d > 0, ε > 0
such that

δ0 < R(ϕ(n1)f, ϕ(n2)f, ϕ(n3)f) < δ1

for any 0 ≤ n1 < n2 < n3. Thus, by choosing the constants c, d, ε, both
Ω ◦ ϕ = P(101) and Ω ◦ ϕ = P(0101, 1010) are attainable.

Finally, we prove that DS(Ω) 6= βN\N. There exists χ ∈ βN\N such that
χ ⊂ {U ⊂ N; acdeg(Uf) ≥ 2}. Then, we prove that χ /∈ DS(Ω). Suppose
to the contrary that χ ∈ DS(Ω). Then, we must have Ω((χ)) = P(101) or
P(0101, 1010).

There exist injections ϕk : N → N (k = 1, 2, . . .) with acdeg(ϕk(N)f) ≥ 2
such that (1), (2) of Definition 5 hold for Θ = P(101) or P(0101, 1010).
Here we take k = 4. Since there exist infinitely many accumulating points
of ϕ4(N)f , take two accumulating points y, z ∈ (R/Z)2 of them with y 6= z.
There exist x ∈ (R/Z)2 and ε > 0 such that x + y + Uε ⊂ D and (x + z +
Uε) ∩ D = ∅, where Uε = {u ∈ (R/Z)2; ||u|| < ε}. Take n1 < n2 < n3 < n4

in N such that ϕ4(ni)f ∈ y+Uε for i = 1, 3 and ϕ4(ni)f ∈ z+Uε for i = 2, 4.
This implies that ωx[{n1, n2, n3, n4}] = 1010, and

1010 ∈ Ω ◦ ϕ4[{n1, n2, n3, n4}]
= Ω ◦ ϕ4[{0, 1, 2, 3}] = Θ[{0, 1, 2, 3}]
= P(101)[{0, 1, 2, 3}] or P(0101, 1010)[{0, 1, 2, 3},

which is a contradiction. Thus, χ /∈ DS(Ω).
Note that the complexities pΘi(k) for Θ1 = P(101) and Θ2 = P(0101, 1010)

satisfy that

pΘ1(k) = (1/2)k2 + (1/2)k + 1 (k = 0, 1, 2, . . .)

and
pΘ2(k) = k2 − k + 2 (k = 1, 2, . . .).

We called the isomorphic class of Θ2 a primitive factor of Ω in [7] since it
attains the maximal pattern complexity.
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