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Abstract

We consider the homogeneous Moran sets M([0, 1], {nk}, {ck})
with increasing spacing such that limk→∞ log nk+1/ log nk = t > 1.
We discuss the multifractal properties of them.

1 Introduction

Let nk ≥ 2 be integers and ck be positive numbers satisfying that 0 < cknk <
1 (k = 1, 2, · · · ). Let dik (i = 1, 2, · · · , nk; k = 1, 2, · · · ) be nonnegative
numbers such that dik ≥ ck (i = 0, 1, · · · , nk − 1) and

d1k + d2k + · · ·+ dnk
k ≤ 1.

Let Dk =
∏k

i=1{1, 2, · · ·ni} and D = ∪∞
k=0Dk, where an element in Dk is

denoted by a finite sequence σ1σ2 · · ·σk of σi ∈ {1, 2, · · · , ni} (i = 1, 2, · · · , k)
and D0 consists of the empty sequence ∅.

Let J∅ be a nondegenerate bounded closed interval in R and define closed
intervals Jσ ⊂ J∅ for σ ∈ D inductively. Let σ = σ′i ∈ Dk with σ′ ∈ Dk−1

and i ∈ {1, 2, · · · , nk}. Assume that Jσ′ = [u, v] with [u, v] ⊂ J∅ and v−u =
|J∅|c1 · · · ck−1 is already defined. Then, define Jσ′i as

[u+ (d1k + · · ·+ dik − ck)(v − u) , u+ (d1k + · · ·+ dik)(v − u)]

(i = 1, 2, · · · , nk) (1.1)

(see Figure 1).

Let

E =
∞∩
k=0

∪
σ∈Dk

Jσ,
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which we call the homogeneous Moran set with structure (J∅, {nk}, {ck}, {dik})
and is denoted by C(J∅, {nk}, {ck}, {dik}). Each interval Jσ for σ ∈ Dk is
called a basic interval of level k. Most case, we take J∅ = [0, 1] and denote

Nk = n1n2 · · ·nk , δk = c1c2 · · · ck (k = 1, 2, · · · ).

d1k d2k d3k d4k

ck ck ck ck

Figure 1: subintervals Jσ′i for σ
′ ∈ Dk−1 and i = 1, 2, 3, 4

If
dik = (i− 1)d′k + ck (i = 1, 2, · · · , nk; k = 1, 2, · · · )

with d′k =
1− ck
nk − 1

, then C(J∅, {nk}, {ck}, {dik}) is called a homogeneous Can-

tor set which is denoted by C∗(J∅, {nk}, {ck}). On the other hand, if

dik = ick (i = 1, 2, · · · , nk; k = 1, 2, · · · ),

then C(J∅, {nk}, {ck}, {dik}) is called a partial homogeneous Cantor set which
is denoted by C∗(J∅, {nk}, {ck}).

It is known by Dejun Feng, Zhiying Wen and Jun Wu [3] that

Theorem 1. [3] The Hausdorff dimensions of a homogeneous Cantor set
and a partial homogeneous Cantor set are obtained as follows:

dimH C∗([0, 1], {nk}, {ck}) = lim inf
k→∞

logNk

− log δk
=: s∗

dimH C∗([0, 1], {nk}, {ck}) = lim inf
k→∞

logNk

− log(δkck+1nk+1)
=: s∗ .

For a general homogeneous Moran set E = C([0, 1], {nk}, {ck}, {dik}), we
have

s∗ ≤ dimH E ≤ s∗.

Moreover, for any s with s∗ ≤ s ≤ s∗, there exists E = C([0, 1], {nk}, {ck}, {dik})
such that dimH E = s.
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Definition 1. Let E = C([0, 1], {nk}, {ck}, {dik}) and IE be the minimal
closed interval containing E. Let C∗ = C∗([0, 1], {nk}, {ck}) be the homoge-
neous Cantor set. For σ ∈ D, let JEσ and JC∗

σ be the intervals defined in (1.1)
for E and C∗, respectively. A continuous increasing mapping G : IE → [0, 1]
satisfying
(1) for any σ ∈ D, G(JEσ ∩ E) = JC∗

σ ∩ C∗, and
(2) G restricted to any connected component of IE \E is linear,
is determined, which we call the canonical mapping of E and is denoted by
GE .

The above function GE was introduced by Hao Li, Qin Wang and Lifeng
Xi [5]. It is also known in [5] that

Theorem 2. [5] If {nk} is bounded in k, and s∗ = lim
k→∞

logNk

− log δk
exists and

satisfies 0 < s∗ < 1, then for any {dik} (i = 1, 2, · · · , nk; k = 1, 2, · · · ),
E = C([0, 1], {nk}, {ck}, {dik}) satisfies that dimHE = s∗ and the canonical
mapping of E is quasi-Lipschitz. That is,

C1(y − x)1+ε < GE(y)−GE(x) < C2(y − x)1−ε

holds for any x < y in IE, where ε > 0 is arbitrary and C1, C2 are positive
constants depending on ε.

In this paper, we are interested in multifractal structures attached to
Moran sets. To get nontrivial multifractal structures, {nk} should increase
very fast and the values in {dik; i = 1, · · · , nk} should have big deviations.
Under these assumptions together with the monotonicity of dik in i, we ob-
tained the local dimension of the Moran set E and the local Hölder exponent
of the function GE .

We assume that

(∗1)


d1k ≤ d2k ≤ d2k ≤ · · · ≤ dnk

k and d2k ≥ 2ck (k = 1, 2, · · · ),

the limit t := lim
k→∞

log nk+1

log nk
exists and t > 1, and

the limit s∗ := lim
k→∞

logNk

− log δk
exists and 0 < s∗ < 1.

In this setting, we introduce natural parameters a, b to describe the local
Hölder continuity degree of GE and the local Hausdorff dimension of E.

Definition 2. Let E = C([0, 1], {nk}, {ck}, {dik}) satisfying (∗1) be given.
For k = 1, 2, · · · and i = 1, 2, · · · , nk, define a ∈ [0, 1] and b ∈ R by

i− 1 = nk − n1−a
k and δt−b

k−1 = (d1k + · · ·+ dik)δk−1. (1.2)

We denote a and b related like this with some k and i by a(i, k) and b(i, k),
respectively. Since both of a(i, k) and b(i, k) are strictly increasing in i for
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any fixed k, there exists a function fk : [0, 1] → R such that
(1) fk(a(i, k)) = b(i, k) for any i = 1, 2, · · · , nk, k = 1, 2, · · · ,
(2) fk is a strictly increasing continuous function for any k = 1, 2, · · · .
We call such a function fk a pre-spacing function.

We also always assume that

(∗2)
{

there exists a strictly increasing continuous function
f : [0, 1] → R such that fk converges to f as k → ∞ on [0, 1].

This function f is determined by the Moran structure ([0, 1], {nk}, {ck}, {dik}),
which we call the spacing function.

Definition 3. For x ∈ E and k = 1, 2, · · · , let σ be the unique element in
Dk such that x ∈ Jσ. We define

Πk(x) = π1(x)π2(x) · · ·πk(x) := σ.

Definition 4. For x ∈ E, let a(x) = lim infk→∞ a(πk(x), k). We call it the
deviation index of x in E.

We prove the following theorems.

Theorem 3. The local Hölder continuity degree of GE at x ∈ E is equal to
1/(t− f(a(x))). That is,

lim inf
y→x, y∈E

log |GE(y)−GE(x)|/ log |y − x| = 1/(t− f(a(x))).

Theorem 4. For any a0 ∈ [0, 1], we have

dimH{x ∈ E; a(x) = a0} = lim
ε→0

dimH{x ∈ E; a(x) ∈ (a0 − ε, a0 + ε)}

=
1− a0

t− f(a0)
s∗.

This value is called the local dimension of E at deviation index a0.

Corollary 1. It holds that

dimH E = sup
a∈[0,1]

1− a

t− f(a)
s∗.

This Corollary generalizes Theorem 1 in [9].

2 Preliminary Lemmas

The following fact is well known since GE maps E onto C∗.
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Fact 1. If there exists ε > 0 and C > 0 such that

GE(y)−GE(x) < C(y − x)1−ε

for any x, y ∈ E with x < y, then dimH E ≥ (1− ε)s∗.

Lemma 1. It holds that

(1) lim
k→∞

log nk

− log δk−1
= (t− 1)s∗ and lim

k→∞

log ck
log δk−1

= t− 1,

(2) f(1) ≤ t− 1 and f(0) ≥ (t− 1)s∗.

Proof (1) Since

lim
k→∞

log nk

logNk−1
= lim

k→∞

log nk∑k−1
i=0 log nk−i

=
1

t−1 + t−2 + · · ·
= t− 1

and lim
k→∞

logNk−1

− log δk−1
= s∗, we have lim

k→∞

log nk

− log δk−1
= (t− 1)s∗.

Since

lim
k→∞

log δk
log δk−1

= lim
k→∞

− log δk/ logNk

− log δk−1/ logNk−1

logNk

logNk−1

=
1/s∗

1/s∗
1 + t−1 + t−2 + · · ·
t−1 + t−2 + · · ·

= t,

we have

lim
k→∞

log ck
log δk−1

= lim
k→∞

log δk − log δk−1

log δk−1
= t− 1.

(2) By the definition, ak(nk, k) = 1 (k = 1, 2, · · · ). On the other hand,

since δ
t−b(nk,k)
k−1 ≤ δk−1, we have b(nk, k) ≤ t−1. Therefore, fk(1) ≤ t−1 (k =

1, 2, · · · ), and hence, f(1) ≤ t− 1.
For any small ε > 0, define i0 ∈ {1, 2, · · · , nk} by i0 − 1 = bnk − n1−ε

k c.
Then, we have

δ
t−b(i0,k)
k−1 =

i0∑
i=1

dikδk−1 ≥ i0ckδk−1.

Therefore,

f(0) = lim
ε→0

lim
k→∞

b(i0, k) = lim
ε→0

lim
k→∞

(
t−

log
∑i0

i=1 d
i
kδk−1

log δk−1

)

≥ lim
ε→0

lim
k→∞

(
t− log i0ckδk−1

log δk−1

)
= lim

ε→0
lim
k→∞

(
t−

log(nk − n1−ε
k )ckδk−1

log δk−1

)

= lim
k→∞

(
t− lognkckδk−1

log δk−1

)
= t− lim

k→∞

log nk + log ck + log δk−1

log δk−1

= t− ((t− 1)s∗ + t− 1 + 1) = (t− 1)s∗.

2

The following lemma in a weaker sense is used in [8, 9].
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Lemma 2. Assume (∗1). Assume that there exist k0 and ε > 0 such that
for any k ≥ k0 and i1, i2 = 1, 2, · · · , nk with i1 < i2, it holds that

log(δk−1(i2 − i1)/nk)

log(δk−1
∑i2

i=i1+1 d
i
k)

> 1− ε.

Then, we have dimH E ≥ s∗(1− ε).

Proof For x, y ∈ E such that x < y and y − x is sufficiently small, there
exist σ ∈ Dk−1 and i1, i2 = 1, 2, · · · , nk with k ≥ k0 and i1 < i2 such that
x ∈ Jσi1 and y ∈ Jσi2 . Since dik ≥ 2ck (i = 2, 3, · · · , nk), we have

(1/2)

i2∑
i=i1+1

dik ≤
i2∑

i=i1+1

dik − ck ≤ y − x

δk−1
≤

i2∑
i=i1+1

dik + ck ≤ 2

i2∑
i=i1+1

dik.

On the other hand, with d′k =
1− ck
nk − 1

we have

GE(y)−GE(x)

δk−1
≤ (i2 − i1)d

′
k + ck ≤ 2(i2 − i1)d

′
k ≤ 4(i2 − i1)/nk.

Hence, we have

GE(y)−GE(x) ≤ 4δk−1(i2 − i1)/nk

= 4δk−1

i2∑
i=i1+1

dik
δk−1(i2 − i1)/nk

δk−1
∑i2

i=i1+1 d
i
k

≤ 8(y − x)
δk−1(i2 − i1)/nk

δk−1
∑i2

i=i1+1 d
i
k

.

Since

log
δk−1(i2 − i1)/nk

δk−1
∑i2

i=i1+1 d
i
k

= log(δk−1(i2 − i1)/nk)− log(δk−1

i2∑
i=i1+1

dik)

= log(δk−1

i2∑
i=i1+1

dik)

(
log(δk−1(i2 − i1)/nk)

log(δk−1
∑i2

i=i1+1 d
i
k)

− 1

)

< log(δk−1

i2∑
i=i1+1

dik)((1− ε)− 1) ≤ log((y − x)/2)(−ε)

we have
δk−1(i2 − i1)/nk

δk−1
∑i2

i=i1+1 d
i
k

< C ′(y − x)−ε

with some constant C ′. Hence, we have

GE(y)−GE(x) < C ′′(y − x)1−ε,

which completes the proof by Fact 1. 2
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3 Proofs of main results

Proof of Theorem 3

Take x ∈ E. Take an arbitrary y ∈ E with x 6= y which is sufficiently close to
x. Then, there exist k = 1, 2, · · · such that πj(x) = πj(y) for j = 1, · · · , k−1
and πk(x) 6= πk(y). Denote this k by k0(y).

Take any subsequence of {y} ⊂ E converging to x such that

L(y) := lim
y→x

log |GE(y)−GE(x)|/ log |y − x|

exists. We may take a further subsequence of {y} such that

ax := lim
y→x

a(πk0(y)(x), k0(y)) and ay := lim
y→x

a(πk0(y)(y), k0(y))

exist.
Let ix = πk0(y)(x) and iy = πk0(y)(y). We denote i1 = min{ix, iy}, i2 =

max{ix, iy} and k = k0(y). By the same argument as in the proof of Lemma
2, we can deduce that

(1/2)δk−1

i2∑
i=i1+1

dik ≤ |y − x| ≤ 2δk−1

i2∑
i=i1+1

dik

and

(1/4)δk−1(i2 − i1)/nk ≤ |GE(y)−GE(x)| ≤ 4δk−1(i2 − i1)/nk.

If ax < ay, then we have

δk−1

i2∑
i=i1+1

dik = δ
t−f(ay)+o(1)
k−1 − δ

t−f(ax)+o(1)
k−1 = δ

t−f(ay)+o(1)
k−1

as y → x. In the same way, if ax > ay, then we have

δk−1

i2∑
i=i1+1

dik = δt−f(ax)+o(1) − δt−f(ay)+o(1) = δt−f(ax)+o(1)

as y → x.
On the other hand, if ax < ay, then we have

δk−1(i2 − i1)/nk = δk−1(n
1−ax+o(1)
k − n

1−ay+o(1)
k )/nk = δk−1n

−ax+o(1)
k

as y → x. If ax > ay, then we have

δk−1(i2 − i1)/nk = δk−1(n
1−ay+o(1)
k − n

1−ax+o(1)
k )/nk = δk−1n

−ay+o(1)
k
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as y → x.
Therefore, if ax < ay, then we have

lim
y→x

log |GE(y)−GE(x)|/ log |y − x|

= lim
y→x

log δk−1 − ax lognk

(t− f(ay)) log δk−1
=

1 + ax(t− 1)s∗

t− f(ay)
,

and if ax > ay, then we have

lim
y→x

log |GE(y)−GE(x)|/ log |y − x|

= lim
y→x

log δk−1 − ay lognk

(t− f(ax)) log δk−1
=

1 + ay(t− 1)s∗

t− f(ax)
.

Therefore, the infimum value of them is 1/(t−f(ax)) and it is attained when
0 = ay < ax. Moreover, since ax ≥ a(x), the infimum value of

lim
y→x

log |GE(y)−GE(x)|/ log |y − x|

taken when ax 6= ay is 1/(t− f(a(x))).
To complete the proof, we compare this value with the possible values

taken when ax = ay. Let ax = ay. Since dik is nondecreasing in i, we have

2|y − x| ≥ δk−1

i2∑
i=i1+1

dik ≥ δ
t−b(i2,k)
k−1

i2 − i1
i2

≥ δ
t−b(i2,k)
k−1

i2 − i1
nk

and

(1/4)|GE(y)−GE(x)| ≤ δk−1
i2 − i1
nk

.

Since b(i2, k) → f(ax) = f(ay) as y → x, we have

log |GE(y)−GE(x)|
log |y − x|

≥ log δk−1 + o(1) + θ

(t− f(ax) + o(1)) log δk−1 + θ

as y → x, where θ = log((i2 − i1)/nk) ≤ 0. Therefore,

lim
y→x

log |GE(y)−GE(x)|
log |y − x|

≥ min

{
1

t− f(ax)
, 1

}
≥ 1

t− f(a(x))
.

2

Proof of Theorem 4

Take arbitrary a1, a2 with 0 ≤ a1 < a2 ≤ 1. For j = 0, 1, 2, · · · and
σ ∈ Dj (j = 1, 2, · · · ), let

Eσ
a1,a2 = {x ∈ E; Πj(x) = σ, a(x) < a2

and a(πk(x), k) ≥ a1 for any k = j + 1, j + 2, · · · }.
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For any x ∈ Eσ
a1,a2 and k0 > j, let k(x, k0) be the minimum k ≥ k0 such

that a(πk(x), k) ∈ [a1, a2). Then, we have

Eσ
a1,a2 =

∞∪
k=k0

{x ∈ Eσ
a1,a2 ; k(x, k0) = k}.

Moreover, {x ∈ Eσ
a1,a2 ; k(x, k0) = k} is covered by (nj+1nj+2 · · ·nk−1)

1−a1

number of intervals of length δ
t−fk(a2)
k−1 − δ

t−fk(a1)
k−1 (both with negligible er-

rors).

Take any β and η > 0 such that β >
1− a1

t− f(a2)
(s∗ + 2η). Then, there

exists k0 > j such that Nk−1 ≤ δ−s∗−η
k−1 and β >

1− a1
t− fk(a2)

(s∗ + 2η) for any

k ≥ k0. Then, we have

∞∑
k=k0

(δ
t−fk(a2)
k−1 − δ

t−fk(a1)
k−1 )β(nj+1nj+2 · · ·nk−1)

1−a1

≤
∞∑

k=k0

δ
(t−fk(a2))β
k−1 N1−a1

k−1 ≤
∞∑

k=k0

δ
(t−fk(a2))β
k−1 δ

−(1−a1)(s∗+η)
k−1

=
∞∑

k=k0

δ
(t−fk(a2))(β−

1−a1
t−fk(a2)

(s∗+η))

k−1 ≤
∞∑

k=k0

δ
(1−a1)η
k−1 → 0

as k0 → ∞. Hence, dimH Eσ
a1,a2 ≤ 1− a1

t− f(a2)
s∗ for any σ ∈ D. Since

{x ∈ E; a(x) ∈ (a1, a2)} ⊂ ∪σ∈DE
σ
a1,a2 ,

we have

dimH{x ∈ E; a(x) ∈ (a1, a2)} ≤ 1− a1
t− f(a2)

s∗. (3.1)

Therefore,

lim
ε→0

dimH{x ∈ E; a(x) ∈ (a0 − ε, a0 + ε)} ≤ 1− a0
t− f(a0)

s∗

holds for any a0 ∈ (0, 1).
Let us prove this inequality for a0 = 0 and a0 = 1.
Let a0 = 0. Then for any a2 ∈ (0, 1), by the same argument to deduce

(3.1), we have
{x ∈ E; a(x) ∈ [0, a2)} ⊂ ∪σ∈DE

σ
0,a2 ,

so that

dimH{x ∈ E; a(x) ∈ [0, a2)} ≤ 1

t− f(a2)
s∗,
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and hence,

lim
ε→0

dimH{x ∈ E; a(x) ∈ [0, ε)} ≤ 1

t− f(0)
s∗.

Let a0 = 1. Then for any a1 ∈ (0, 1), by the same argument to deduce
(3.1), we have

{x ∈ E; a(x) ∈ (a1, 1]} ⊂ ∪σ∈DE
σ
a1

and

dimH{x ∈ E; a(x) ∈ (a1, 1]} ≤ 1− a1
t− f(1)

s∗,

where

E
σ
a1 = {x ∈ E; Πj(x) = σ, a(πk(x), k) ≥ a1 for any k = j + 1, j + 2, · · · }.

Hence, we have

lim
ε→0

dimH{x ∈ E; a(x) ∈ (1− ε, 1]} = 0.

Together with these results, we have

lim
ε→0

dimH{x ∈ E; a(x) ∈ (a0 − ε, a0 + ε)} ≤ 1− a0
t− f(a0)

s∗ (3.2)

for any a0 ∈ [0, 1].
To complete the proof, it is sufficient to prove

dimH{x ∈ E; a(x) = a0} ≥ 1− a0
t− f(a0)

s∗ (3.3)

for any a0 ∈ [0, 1].
For a0 = 1, (3.3) is trivial.
Let us prove (3.3) for a0 ∈ (0, 1). Take a sufficiently large k0. For any

k ≥ k0, let uk, vk satisfies that 0 ≤ uk ≤ a0 ≤ vk ≤ 1 and

(1/3)n1−a0
k < #{i; uk ≤ a(i, k) ≤ vk} < (1/2)n1−a0

k . (3.4)

Then, we have limk→∞ uk = limk→∞ vk = a0 since otherwise, there exists
δ > 0 such that there exists an arbitrary large k with the property that
either

#{i; uk ≤ a(i, k) ≤ vk} ≥ n1−a0
k − n1−a0−δ

k

or
#{i; uk ≤ a(i, k) ≤ vk} ≥ n1−a0+δ

k − n1−a0
k ,

which contradicts (3.2) as limk→∞ nk = ∞. Take any σ ∈ Dk0 and define

Hσ
k0 = {x ∈ E ∩ Jσ; uk ≤ a(πk(x), k) ≤ vk (∀k = k0 + 1, k0 + 2, · · · )}.
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Then, we have Hσ
k0

⊂ {x ∈ E; a(x) = a0}.
For j = 1, 2, · · · , define mj and n′

j by

{mj + i; i = 1, 2, · · · , n′
j} = {πk0+j(x); x ∈ Hσ

k0}.

Let [U, V ] be a basic interval of E of level k0 + j. Let U ′ be the right end
points of the mj-th basic intervals of level k0 + j + 1 contained in [U, V ]
if mj ≥ 1 and U ′ = U if mj = 0. Let V ′ be the right end points of the
(mj + n′

j)-th basic intervals of level k0 + j + 1 contained in [U, V ]. We
replace each [U, V ] by [U ′, V ′] and construct basic intervals of Hσ

k0
of level

j. We define pj = U ′ − U , qj = V ′ − U and δ′j = qj − pj for j = 0, 1, 2, · · · .
Let c′j = δ′j/δ

′
j−1 for j = 1, 2, · · · . Finally, define

dij
′
= d

mj+i
k0+j δk0+j−1/δ

′
j−1 (i = 1, 2, · · · , n′

j). (3.5)

Then, it can be easily verified that

Hσ
k0 = C(J′σ, {n′

j}, {c′j}, {dij
′}),

where J′σ = [U + p0, U + q0] if U is the left endpoint of Jσ.
Denoting k = k0 + j, we have (1/3)n1−a0

k < n′
j < (1/2)n1−a0

k , and hence,

N ′
j = n′

1 · · ·n′
j = N

1−a0+o(1)
k (as j → ∞).

Let b0 = f(a0). Take a, a′ which are sufficiently close to a0 with 0 < a <
a′ < a0. Let b = f(a) and b′ = f(a′). Then, for any sufficiently large k,
the average distance between the neighbouring basic intervals of E of level
k with the index between uk and vk is not less than the same value with the
index between a and a′. Hence we have

δ′j = qj − pj ≥ (δ
t−b′+o(1)
k − δ

t−b+o(1)
k )

n
1−a0+o(1)
k

n
1−a+o(1)
k −n

1−a′+o(1)
k

= δ
t−b′+o(1)
k n

a−a0+o(1)
k (as j → ∞).

In the same way, for any c, c′ with a0 < c < c′ < 1 and d′ = f(c′) we have

δ′j ≤ δ
t−d′+o(1)
k n

c−a0+o(1)
k (as j → ∞).

Since nk = δ
−(1−(1/t))s∗+o(1)
k , for any ε > 0, there exists b′, d′ with

b0 − ε < b′ < b0 < d′ < b0 + ε

such that
δ
t−b′+o(1)
k ≤ δ′j ≤ δ

t−d′+o(1)
k (as j → ∞).
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Since

1− a0
t− b′

s∗ =
1− a0
t− b′

lim
k→∞

logNk

− log δk
= lim

j→∞

logN ′
j

− log δt−b′

k

≤ dimH C∗(J′σ, {n′
j}, {c′j}) = lim

j→∞

logN ′
j

− log δ′j

≤ lim
j→∞

logN ′
j

− log δt−d′

k

=
1− a0
t− d′

lim
k→∞

logNk

− log δk
=

1− a0
t− d′

s∗,

and ε > 0 is arbitrary, we have

dimH C∗(J′σ, {n′
j}, {c′j}) =

1− a0
t− b0

s∗.

Take any j = 1, 2, · · · and i1, i2 = 1, 2, · · · , n′
j such that i1 < i2. Take

0 < a < a′ < a0 close enough to a0. Let b = f(a) and b′ = f(a′). Then,
since dik is nondecreasing in i, we have

δk−1d
mj+i
j ≥

δ
t−b′+o(1)
k−1 − δ

t−b+o(1)
k−1

n
1−a+o(1)
k − n

1−a′+o(1)
k

= δ
t−b′+o(1)
k−1 n

a−1+o(1)
k

for any i = 1, 2, · · · , n′
j as k → ∞, and hence

δ′j−1

i2∑
i=i1+1

dij
′
= δk−1

mj+i2∑
i=mj+i1+1

dik ≥ δ
t−b′+o(1)
k−1 n

a−1+o(1)
k (i2 − i1).

On the other hand, we have

δ′j−1(i2 − i1)/n
′
j = δ

t−d′+o(1)
k−1 na0−1

k (i2 − i1).

Hence,

log(δ′j−1(i2 − i1)/n
′
j)

log(δ′j−1

∑i2
i1+1 d

i
j
′
)

≥ (t− d′ + o(1)) log δk−1 + θ

(t− b′ + o(1)) log δk−1 + (a− a0) log nk + θ

≥ min

{
t− d′ + o(1)

t− b′ + (a− a0)s∗(t− 1) + o(1)
, 1

}
as k → ∞, where θ = log(na0−1(i2 − i1)) ≤ 0. Therefore, for any ε > 0, by
taking a, a′, c, c′ sufficiently close to a0, there exists j0 such that

log(δ′j−1(i2 − i1)/n
′
j)

log(δ′j−1

∑i2
i1+1 d

i
j
′
)

> 1− ε

12



for any j ≥ j0. Hence by Lemma 2, we have

dimH Hσ
k0 ≥ 1− a0

t− f(a0)
s∗(1− ε).

Thus, we have (3.3) for any a0 ∈ (0, 1) since ε > 0 is arbitrary.
Finally, we prove that

dimH{x ∈ E; a(x) = 0} ≥ 1

t− f(0)
s∗. (3.6)

We define Hσ
k0

exactly in the same way as above with a0 = 0 and uk = 0,

and hence mj = 0. We define J′σ, {n′
j}, {c′j}, {dij

′} in the same way as above.
Then, we have

Hσ
k0 = C(J′σ, {n′

j}, {c′j}, {dij
′}).

We can also prove

dimH C∗(J′σ, {n′
j}, {c′j}) =

1

t− f(0)
s∗, (3.7)

since N ′
j = N

1+o(1)
k and δ′j = δ

t−f(0)+o(1)
k with k = k0 + j as j → ∞.

Take any 1 ≤ i1 < i2 ≤ n′
j . By (3.5), we have

d1j
′
δ′j−1 = d1kδk−1 = δ

t−f(0)+o(1)
k−1 and δ′j−1 = δ

t−f(0)+o(1)
k−1 .

Since

d1j
′
δ′j−1 ≤ δ′j−1

i2∑
i=i1+1

dij
′ ≤ δ′j−1

and
d1j

′
δ′j−1 ≤ δ′j−1(i2 − i1)/n

′
j ≤ δ′j−1,

we have

log(δ′j−1(i2 − i1)/n
′
j)

log(δ′j−1

∑i2
i=i1+1 d

i
j
′
)
=

(t− f(0) + o(1)) log δk−1

(t− f(0) + o(1)) log δk−1
= 1 + o(1)

as j → ∞. Hence for any ε > 0, there exists j0 such that

log(δ′j−1(i2 − i1)/n
′
j)

log(δ′j−1

∑i2
i1+1 d

i
j
′
)

> 1− ε

for any j ≥ j0. Therefore by (3.7) and Lemma 2, we have

dimH Hσ
k0 ≥ 1

t− f(a0)
s∗(1− ε).

Since ε > 0 is arbitrary, we have (3.6). 2
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Proof of Corollary 1

By Theorem 4,

dimH E ≥ sup
a∈[0,1]

1− a

t− f(a)
s∗

holds clearly. We prove the opposite inequality. Take any η > 0. By
Theorem 3, for any a ∈ [0, 1], there exists εa > 0 such that

dimH{x ∈ E; a− εa < a(x) < a+ εa} <
1− a

t− f(a)
s∗ + η.

Since E is a compact set, there exists a finite covering of [0, 1] consisted of
intervals of the form (a− εa, a+ εa). It follows that

dimH E < sup
a∈[0,1]

1− a

t− f(a)
s∗ + η.

Since η > 0 is arbitrary, we have

dimH E ≤ sup
a∈[0,1]

1− a

t− f(a)
s∗,

which completes the proof. 2

The following examples were essentially discussed in [9].

Example 1. Let real numbers λ, t, s with λ > 1, t > 1, 0 < s < 1 be
given. Let k0 be a sufficiently large integer. Define

nk = bλtk0+kc, ck = λ−(1/s)tk0+k
(k = 1, 2, · · · ).

Let p be a real number such that 0 < p < (1 − s)(t − 1). Define dik (i =
1, 2, · · · , nk; k = 1, 2, · · · ) by

d1k + d2k + · · ·+ dik = (nk − i+ 1)
− p

s(t−1) . (3.8)

Then, we have a homogeneous Moran set C(J∅, {nk}, {ck}, {dik}) satisfying
the conditions (∗1) and (∗2) with this t, s∗ = s and the spacing function
f(a) = pa+ t− 1− p.

To prove this, let ai = a(i, k), bi = b(i, k) (i = 1, 2, · · · , nk) for an arbi-

trary k = 1, 2, · · · . Since i−1 = nk−n1−ai
k , we have 1−ai =

log(nk − i+ 1)

log nk
.

Moreover, by (3.8),

δk−1(nk − i+ 1)
− p

s(t−1) = δt−bi
k−1 .

Hence,

t− 1− bi = − p

s(t− 1)

log(nk − i+ 1)

log δk−1
=

p

s(t− 1)

(1− ai) log nk

− log δk−1

14



-

6

a

1−a
1+p−pas

1

s

1
1+ps

Figure 2: local dimension of E at a

Then, the following fk becomes a pre-spacing function:

fk(a) = t− 1− p

s(t− 1)

(1− a) log nk

− log δk−1
(a ∈ [0, 1]).

Since
log nk

−s(t− 1) log δk−1
converges to 1 as k → ∞ uniformly in a, the spacing

function f is determined as the limit of fk so that

f(a) = t− 1− p(1− a) = pa+ t− 1− p.

In this case, we have

dimH E = sup
a∈[0,1]

1− a

t− f(a)
s = sup

a∈[0,1]

1− a

1 + p− pa
s =

1

1 + p
s,

where “sup” is attained at a = 0. Figure 2 is the graph of
1− a

1 + p− pa
s.

Example 2. We consider the same setting as Example 1, except for {dik}.
Let w, p be real numbers such that w > 1, 0 < p < (1 − s)(t − 1). Define
dik (i = 1, 2, · · · , nk; k = 1, 2, · · · ) by

d1k + d2k + · · ·+ dik = δ
p(log(nk−i+1)/ lognk)

w

k−1 . (3.9)

Then, we have a homogeneous Moran set C(J∅, {nk}, {ck}, {dik}) satisfying
the conditions (∗1) and (∗2) with this t, s∗ = s and the spacing function
f(a) = p(1− a)w + t− 1.
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6

a

1−a
1+p(1−a)w s

1

s

1
1+ps

Figure 3: local dimension of E at a in the case p(w − 1) > 1

To prove this, let ai = a(i, k), bi = b(i, k) (i = 1, 2, · · · , nk) for an arbi-

trary k = 1, 2, · · · . Since 1− ai =
log(nk − i+ 1)

log nk
, by (3.9), we have

δ
1+p(log(nk−i+1)/ lognk)

w

k−1 = δt−bi
k−1 .

Hence,

t− 1− bi = p

(
log(nk − i+ 1)

log δk−1

)w

= p(1− ai)
w

Then, the following fk becomes a pre-spacing function:

fk(a) = t− 1− p(1− a)w (a ∈ [0, 1]).

Hence, f(a) = t− 1− p(1− a)w is the spacing function.
In this case, we have

dimH E = sup
a∈[0,1]

1− a

t− f(a)
s = sup

a∈[0,1]

1− a

1 + p(1− a)w
s

=


s/(1 + p) if p(w − 1) ≤ 1

w − 1

w

(
1

p(w − 1)

)1/w

s if p(w − 1) > 1
,

where “sup” is attained at a = 0 in the former case and at a = 1− (p(w −
1))−1/w in the latter case. Figure 3 is the graph of

1− a

1 + p(1− a)w
s in the

case of p(w − 1) > 1.
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