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Abstract

We consider the homogeneous Moran sets M([0,1], {ni}, {cx})
with increasing spacing such that limy_, . logngyi/logng = ¢t > 1.
We discuss the multifractal properties of them.

1 Introduction

Let ng, > 2 be integers and ¢ be positive numbers satisfying that 0 < cpng, <
1(k=12,---). Letdj (¢ =1,2,--- ,n; k =1,2,---) be nonnegative
numbers such that dfC >cp (i=0,1,--- ,np — 1) and

dp+dp+ -+ dF <1

Let Dy = Hf:1{1,2, ---n;} and D = U2 Dy, where an element in Dy, is
denoted by a finite sequence o109 - - o of o € {1,2,--- ;n;} (i =1,2,--- , k)
and Dg consists of the empty sequence (.

Let Jy be a nondegenerate bounded closed interval in R and define closed
intervals J, C Jy for o € D inductively. Let 0 = ¢’i € Dy, with ¢/ € Dy
and ¢ € {1,2,--- ,ng}. Assume that J,» = [u,v] with [u,v] C Jg and v —u =
|Jglc1 -+ - ci—1 is already defined. Then, define J,/; as

[u+(d}. + - +d, —cp)(v—u), u+t (dp + -+ di) (v —u)]
(Z: L2, 7nk) (11)
(see Figure 1).

Let
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which we call the homogeneous Moran set with structure (Jg, {rnx}, {cx}, {dL})
and is denoted by C(Jgp, {nx}, {cx},{d}}). Each interval J, for o € Dy is
called a basic interval of level k. Most case, we take Jy = [0, 1] and denote

Ny =mning---ng, 0y =crea---cp (k=1,2,---).

Cl Ck Ck Ck
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Figure 1: subintervals J,/; for 0/ € Dy and 1 = 1,2,3,4
If
k_ (z_l)dk_'_ck (Z:1a27 y gy k:1727)
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with dj, = , then C(Jg, {nx}, {cx}, {d}) is called a homogeneous Can-
tor set Which is denoted by C*(Jg, {nx},{ck}). On the other hand, if

di =icp, (i=1,2,---,np; k=1,2,---),

then C(Jg, {nx}, {ck}, {d}}) is called a partial homogeneous Cantor set which
is denoted by Cy(Jg, {nx}, {cx})-
It is known by Dejun Feng, Zhiying Wen and Jun Wu [3] that

Theorem 1. [3] The Hausdorff dimensions of a homogeneous Cantor set
and a partial homogeneous Cantor set are obtained as follows:

dimg C*([0,1], {ng}, {ck}) = hmmf _Oiggk I
‘ log Nj
dimg C. ([0, 1], {nx}, {ck}) = hmlnf = Sk
1 C([0, 1], {nw}, {er}) = —log(0kcri1mkr1)

For a general homogeneous Moran set E = C([0,1], {ng}, {cx}, {d}}), w
have

5% < dimgy FE < s*.

Moreover, for any s with s, < s < s*, there exists E = C([0, 1], {ng}, {cx}, {d}})
such that dimg E = s.



Definition 1. Let E = C([0,1], {nx}, {cx},{d:}) and Ir be the minimal
closed interval containing E. Let C* = C*([0, 1], {nx}, {cx}) be the homoge-
neous Cantor set. For o € D, let JZ and J¢ be the intervals defined in (1.1)
for E and C*, respectively. A continuous increasing mapping G : Ig — [0, 1]
satisfying

(1) for any o € D, GJE N E) =J¢ nC*, and

(2) G restricted to any connected component of I \ E is linear,

is determined, which we call the canonical mapping of E and is denoted by

GE.

The above function Gg was introduced by Hao Li, Qin Wang and Lifeng
Xi [5]. It is also known in [5] that

log N
Theorem 2. [5] If {ny} is bounded in k, and s* = lim 08 Tk
k—oo — log dy,

satisfies 0 < s* < 1, then for any {di} (i = 1,2, ,ng; k = 1,2,--+),
E =C([0,1], {ng}, {ck}, {d}}) satisfies that dimpE = s* and the canonical
mapping of E is quasi-Lipschitz. That is,

exists and

Cily — )" < Gpy) — Gp(z) < Cy(y — x)' ¢

holds for any x <y in Ig, where € > 0 is arbitrary and C1, Cy are positive
constants depending on €.

In this paper, we are interested in multifractal structures attached to
Moran sets. To get nontrivial multifractal structures, {ny} should increase
very fast and the values in {di; i = 1,--- ,n.} should have big deviations.
Under these assumptions together with the monotonicity of d in 4, we ob-
tained the local dimension of the Moran set F/ and the local Holder exponent
of the function Gg.

We assume that

di <di <di <---<d* and d2 > 2¢p, (k=1,2,---),

1
the limit ¢ := lim —2 **1 oxists and ¢ > 1, and
(*1) k—oo log nﬁ[
the limit s* := lim F exists and 0 < s* < 1.
k—oo — log i,

In this setting, we introduce natural parameters a,b to describe the local
Holder continuity degree of G and the local Hausdorff dimension of E.

Definition 2. Let E = C([0,1], {ng}, {cx}, {d}}) satisfying (x1) be given.
For k=1,2,--- and i =1,2,--- ,ng, define a € [0,1] and b € R by

i—1=mn;—n. " and 5,’;:2 = (di + -4 db)op_1. (1.2)

We denote a and b related like this with some k and ¢ by a(i, k) and b(i, k),
respectively. Since both of a(i, k) and b(7, k) are strictly increasing in ¢ for



any fixed k, there exists a function fy : [0, 1] — R such that

(1) fr(a(i,k)) =0b(i, k) for any i = 1,2,--- ,ng, k=1,2,---,

(2) fx is a strictly increasing continuous function for any k =1,2,---.
We call such a function f; a pre-spacing function.

We also always assume that

(+2) there exists a strictly increasing continuous function
f:[0,1] — R such that fj converges to f as k — oo on [0, 1].

This function f is determined by the Moran structure ([0, 1], {ng}, {cx}, {d}}),
which we call the spacing function.

Definition 3. For x € EF and k£ = 1,2,---, let 0 be the unique element in
Dy, such that z € J,. We define

Iy(x) = m(z)me(x) - - - mp () = 0.

Definition 4. For x € E, let a(z) = liminfy_, a(mx(x), k). We call it the
deviation index of x in FE.

We prove the following theorems.

Theorem 3. The local Hélder continuity degree of Gg at x € E is equal to
1/(t = f(a(x)). That is,

liminf log|GE(y) — Ge(x)|/logly — x| = 1/(t = f(a(x))).

y—x, yekE
Theorem 4. For any ag € [0,1], we have

dimg{z € E; a(x) =ap} = lin%dimH{x €FE; a(x) €(ap—¢€ ap+e€)}
e—

1—ag <
t — f(ao)

This value is called the local dimension of E at deviation index ag.

*

Corollary 1. It holds that

1—-a
dimg F = sup ———— s".
a€l0,1] t— f((l)

This Corollary generalizes Theorem 1 in [9].

2 Preliminary Lemmas

The following fact is well known since Gg maps F onto C*.



Fact 1. If there exists € > 0 and C' > 0 such that
Grly) — Gpla) < Cly — )™
for any x,y € E with x <y, then dimyg E > (1 — €)s*.

Lemma 1. It holds that
log ny

1) lim ———— = (t—1)s" and li =t—1
O Tlogey = U I and g =
(2) f(1) <t —1and f(0) > (t —1)s™.

Proof (1) Since
log ng . log ng 1

lim —=—— = lim =t—-1

k—oo log Np_1 T koo Zf:—ol l0g 2 _; = t—l 2.,

log N 1
and lim —2h=1 _ s*, we have lim _ 08Tk _ (t—1)s"
k—oo — log Op_1 k—oo — log Op_1
Since
log &y, _ —log dx/log N, log Nj,
im = lim
k—o0 log 5]4:—1 k—ro0 — log (5k_1/log Nk—l log Nk—l
IRV T A S A _,
Clfst otttz
we have
log ¢ . logdr —logdp_1
im =1 =t—1.
k—oc log 0k _1 k—o0 log 0,1
(2) By the definition, ag(ng, k) =1 (k = 1,2,---). On the other hand,

since 5tib(n’“’k) < 6p_1, we have b(ny, k) < t—1. Therefore, f(1) <t—1 (k=
k—1

1,2,---), and hence, f(1) <t —1.
For any small € > 0, define ig € {1,2,--- ,n;} by ip — 1 = |[ng — n,lgfE
Then, we have

10
t—b(io,k Z ; ,
51@—1(10 ) = d}cék,l Z Zock(sk,l.
i=1
Therefore,

T . . s . log 220:1 d};dk—l
10) = lg% klglc}o blio, k) = lg% klin;o (t a log 0k—1

log ik 1 — ) epli
> lim lim (¢ — 08 10CKOk—1 ) _ lim lim (¢ — 08 (1 " Jexdk -1
e—0 k—o0 log 5k—1 e—0 k—o0 log 6k—1

. log ngcrpdp_1 . logng + logcp + log o1
=lim ([t —-————"—= ) =t— lim
log 5k—1 k—o0 log 514:—1
=t—(t—1Ds"+t—1+1)=(t—1)s".

The following lemma in a weaker sense is used in [8, 9].



Lemma 2. Assume (x1). Assume that there exist kg and € > 0 such that

for any k > ko and i1,i0 = 1,2, ,ng with i1 < i9, it holds that
log((sk_l(’iz - Zl)/nk)
log(0x—1 222:“4_1 d7j{;)

Then, we have dimg E > s*(1 — ¢).

Proof For z,y € E such that x < y and y — « is sufficiently small, there
exist 0 € Dy_1 and i1,i0 = 1,2, -+ ,ng with k > kg and i1 < 75 such that

>1—e.

z € Jyiy and y € Jyi,. Since df, > 2¢ (i = 2,3,--+ ,ny), we have
(1/2) Z di < Z dt
i=11+1 i=i1+1 i=11+1 i=11+1
N "
On the other hand, with d;, = we have

ne —

GE(yzs_ Ge(z) < (ig — i1)dy + cx < 2(iz — i1)d), < 4(ig — 1) /g
k—1

Hence, we have

G ( )—GE( )<45k,1(i2—i1)/nk

P Z di Ok—1 2—21)/nk <8(y—x) 5k71(i2fi1)/nk.
O— 1Zz 21+1 Ok—1 Z?:il—&-l d}c

1=i1+1
Since
Op—1(ia —1i1)/n ) . - i
log — i 2i2 v/ lk = log(dk—1(i2 — 1) /nk) — log(dr—1 Z d;,)
Ok—1 Zi=i1+1 dy, i=iq+1
= log(dx—1 Z d},) <log (Ok-1(82 = &) /) —1)
i=i1+1 log(ék 127, i1+1 k)
12 ‘
<log(de—1 > di)((1—€) —1) <log((y — z)/2)(—e)
1=11+1
we have

5 (i
k 1(%2i in)/n <Oy —2)
Ok-1 223041 9,

with some constant C’. Hence, we have
Gr(y) — Gp(r) < C"(y —2)'™,

which completes the proof by Fact 1.



3 Proofs of main results

Proof of Theorem 3

Take x € E. Take an arbitrary y € E with x # y which is sufficiently close to
x. Then, there exist k = 1,2,--- such that 7;(z) = wj(y) for j =1,--- k-1
and 7 (z) # 7 (y). Denote this k by ko(y).

Take any subsequence of {y} C E converging to x such that

L(y) := lim log |Gp(y) — Ge(x)|/logly — |
Yy—x
exists. We may take a further subsequence of {y} such that

a, = lim a(ﬂko(y)(x), ko(y)) and ay, := lim a(ﬂko(y)(y), ko(y))

Yy—x Yy—x

exist.

Let iy = T, (y) (%) and iy = 7y, (y). We denote i1 = min{iy, iy}, iz =
max{iy, iy} and k = ko(y). By the same argument as in the proof of Lemma
2, we can deduce that

12 i2
(1/2)0k1 Y, dp <ly—2| <201 Y dj
i=i1+1 1=i1+1
and
(1/4)0k—1(i2 — i1)/np < |GE(y) — Ge(z)] < 4081 (12 — i1)/n-

If a; < ay, then we have

12
k1 Y dy = s F@+o) _ gt=flan)to(1) _ st=fay)+o(1)
i=i1+1

as y — w. In the same way, if a, > a,, then we have
i2
Op—1 Z d}; _ st—flaz)+o(1) _ gt=f(ay)+o(l) _ st—f(ax)+o(1)

1=11+1

as y — .
On the other hand, if a, < ay, then we have

as y — z. If a; > ay, then we have

S (ia — 1) /g = 5k_1(n11€—ay+0(1) _ 7,L]1€—m+o(1))/nlg _ 5k_1n;ay+0(1)



as y — T.
Therefore, if a, < ay, then we have

lim log |Ge(y) — Ge(z)|/log |y — x|

~ lim logdp—1 —aglogng 1+ az(t—1)s*
v=e (t — f(ay))log k-1 t—flay)

and if a; > ay, then we have

lim log |Ge(y) — Ge(z)|/log ly — x|

y log 0p—1 —aylogn, 1+ ay(t—1)s*
= 11m =
v=u (t— f(az))log o1 t— f(aq)

Therefore, the infimum value of them is 1/(t— f(az)) and it is attained when
0 = ay < az. Moreover, since a, > a(x), the infimum value of

lim log |Ge(y) — Ge(x)|/log |y — |

taken when a, # a, is 1/(t — f(a(z))).
To complete the proof, we compare this value with the possible values
taken when a, = ay,. Let a, = ay. Since dj, is nondecreasing in 4, we have

i2 . . . .
Z i —b(i 2 —1 —b(i 2 —1

- k—1
7 n
=i 41 2 k

and

Since b(i2, k) — f(az) = f(ay) as y — x, we have

log|Gr(y) — Gr(@)| | log 01 +o(1) + 6
log |y — | ~ (t— f(az) +o(1))log g1 + 0

as y — x, where 6 = log((ia — i1)/ng) < 0. Therefore,

. log|Gr(y) - Ge@)| . 1 1
g}lg}c log |y — x| me{t—f(agg)7 1}2’5_]0(0(55)).

Proof of Theorem 4

Take arbitrary a;, ae with 0 < a; < a3 < 1. For j = 0,1,2,--- and
ceD;(j=1,2,---), let

o
ai,a2

={z e F; llj(z) =0, a(z) < ag
and a(mg(z),k) > ay forany k=j7+1,5+2,---}.

co



For any © € E7 , and kg > j, let k(z, ko) be the minimum k > kg such

ai,as

that a(mg(z), k) € [a1,a2). Then, we have

al,ag = U {.le € Ea1 as’ (.’L’,ko) = k}

k=ko
Moreover, {z € EJ, ,.; k(z,ko) = k} is covered by (njyinj4o---np_1) ="
number of intervals of length (5t U ’“(GQ) - (5t U ’“(al) (both with negligible er-

rors).

Take any 8 and n > 0 such that g > (s + 27n). Then, there

1-—
—f( 1)
exists kg > j such that Ni_1 < (5,2;_" and 8 > s

t — fr(az)
k > kg. Then, we have

(s* 4 2n) for any

o

S G = 5 (g ompa) 0
k*k’o
Z 6 fk az) BNl a1 < Z 5(t fk(‘12 55 (1 a1)(s*+n)
k= k’o k=kg
fk (a2) — i f (a )(5 +n)) 1 a
- 3R 5 o
k=ko k=ko

as kg — oo. Hence, dimyg E? s* for any o € D. Since

1
.
W Tt — flag)

{z € E; a(z) € (a1, a2)} C UsepEY

1,027
we have 1
. —al
d e E; € _ 5" 3.1
mir{e € B a(r) € (@, 0)} < s s (31)
Therefore,
lim dimp {z € F; a(x) € ( Py
im dim : — ey
s H\T ; alxr a €, Qg € S t—f(ao) S

holds for any ag € (0,1).
Let us prove this inequality for ag = 0 and ag = 1.
Let agp = 0. Then for any ag € (0,1), by the same argument to deduce
(3.1), we have
{r € E; a(r) € [0, a2)} C UgepEq,,,
so that
1

dll’l’lH{.’L‘ S E, Q(.f) € [O, CZQ)} S m S*,



and hence,

li_r%dimH{x € E; a(x) €0,¢)} < =0 s

Let agp = 1. Then for any a; € (0,1), by the same argument to deduce
(3.1), we have B
{z € E; a(z) € (a1, 1]} C UpepEy,

and 1
dimy{z € E; a(z) € (a1, 1]} < —— 5*,

= f(1)

where
EZI ={zx € E; llj(z) =0, a(mi(x),k) > a; forany k=5+1,5+2,---}.
Hence, we have

limdimpy{z € E; a(x) € (1 —¢, 1]} =0.

e—0

Together with these results, we have

1—
lim dimp {2 € E; a(z) € (a0 — ¢, ag +¢)} < % s* (3.2)
for any ag € [0, 1].
To complete the proof, it is sufficient to prove
1-— a
dimg{r € E; a(z) =ap} > ——— s* 3.3
H{ ( ) 0} :_ f(aO) ( )

for any ag € [0, 1].

For ap = 1, (3.3) is trivial.

Let us prove (3.3) for a9 € (0,1). Take a sufficiently large ky. For any
k > ko, let ug, vy satisfies that 0 < ugp < ag < v <1 and

(1/3)n, " < #{i; up < ali k) < vp} < (1/2)n, . (3.4)

Then, we have limg_ oo v = limp_,oo v = ag since otherwise, there exists
0 > 0 such that there exists an arbitrary large k& with the property that
either

#{i; up < a(i,k) <vg} > n,lc_ao — n,lg_ao_é

or
#i; up < ali k) <wvg} > ni*aoJré il

which contradicts (3.2) as limy_,o nx = 00. Take any o € D0 and define

HZO:{:L’GEQJU; up < a(mp(z), k) < vg (Vk:ko—i-l,ko—i-Q,'”)}.

10



Then, we have Hf C {z € E; a(z) = ao}.
For j =1,2,---, define m; and n/; by

{mJ+Z7 1= 1727"' 7n_/7} = {7Tk0+j(l’); MRS H]go}

Let [U, V] be a basic interval of E of level ko + j. Let U’ be the right end
points of the m; -th basic intervals of level ky + j 4+ 1 contained in [U, V]
if mj > 1and U' = U if mj = 0. Let V' be the right end points of the
(mj + n})-th basic intervals of level kg + j + 1 contained in [U,V]. We
replace each [U, V] by [U’, V'] and construct basic intervals of H{ of level
j. We define p; = U’ — U, ¢j = V' — U and ¢} = ¢; — pj for j =0,1,2,---.
Let ¢ = 07 /0, for j =1,2,---. Finally, define

dj' =y g1 /85y (1=1,2,- ). (3.5)

Then, it can be easily verified that
o il
Hi, = C(Jg, {nj} A} {d; ),

where J/. = [U + po, U + qo] if U is the left endpoint of J,.
Denoting k = ko + j, we have (1/3)n,”* < n’; < (1/2)n; ", and hence,
Nj=ny---nj= Ng_aﬁo(l) (as j — 00).
Let by = f(ag). Take a,a’ which are sufficiently close to ag with 0 < a <
a’ < ag. Let b = f(a) and b = f(a’). Then, for any sufficiently large k,
the average distance between the neighbouring basic intervals of E of level
k with the index between wu; and vy, is not less than the same value with the
index between a and a’. Hence we have

1—ag+o(1)
"

_ t—b'+0(1) t—b+o(1)
6‘; - QJ _p] Z (6kj - 5k )nl—a+0(1)7n1—a/+o(1)
k k
= 5271’ +°(1)nzfa°+o(1) (as j — o0).

In the same way, for any ¢, with ag < ¢ < ¢ <1 and d' = f(c’) we have

5} < 5,27dl+0(1)n27a0+0(1) (as j — o).

(1_(1/t))s*+0(1), for any € > 0, there exists b, d’ with

Since ng = 9§,
bp—e<b <by<d <by+e

such that

5}t;b’+o(1) < 5; < 5Z—d’+o(1) (as i OO)'

11



Since

l—ay , 1—ag . logNg . log IV
§* = = lim —
t—v t—b k—oo —logdy jooo —logé,i‘b
log N;

< dimy € (T, {n} ) = lim —=ss
J

< fim 08N _L-ao g dogNe 1-ag
7j~>oo_log5]i_d/ - t—d k- —logdk B t—d ’

and € > ( is arbitrary, we have

1—&0 *
S .
t — by

dimgy C*(J, {n;}a {C;}) =

Take any 7 = 1,2,--- and 71,40 = 1,2,--- ,n;- such that i; < 5. Take
0 < a < d < ap close enough to ag. Let b = f(a) and b’ = f(a’). Then,
since dj, is nondecreasing in 7, we have

5t—b’+0(1) . 6t—b+o(1)

mj—+i k—1 k—1 t—b' +0(1) a—140(1)
Op—rd;” " = 1—ato(l) _1-a/+o(l) =0 Mg
Ty, — g
for any i = 1,2, ,n} as k — oo, and hence
12 mj+i2
il i t— b’+o(1) a—1+0(1)
Z dj = 0p_1 Z dj, > 5k 1 n, (22 — 21)
1=11+1 i:mj+i1+1

On the other hand, we have

. . —d’ 1
(5},1(22 — 21)/n;- = (5,2_1 ol )nﬁo 1(22 —i1).

Hence,

log(07_y (i2 —i1)/n})
log((s/ 1211—‘,—1 j)
(t—d +o(1))logdp_1 +6
~ (t—=b+o0(1))logdg—1 + (a —ag)logng + 6
. t—d +o(1)
> 1
= mm{t "V 4 (a—ag)s* (t — 1) +o(1)’

as k — oo, where 6 = log(n®~1(iy —i1)) < 0. Therefore, for any € > 0, by
taking a, d’, ¢, ¢’ sufficiently close to ag, there exists jo such that

log(0}_y (2 —i0)/n) |
log( 1Zzl+1 ])

12



for any j > jo. Hence by Lemma 2, we have

. - 1—ap
dlmH Hk)() 2 ms (1 - 6).

Thus, we have (3.3) for any ag € (0, 1) since € > 0 is arbitrary.
Finally, we prove that

1
t—£(0)

We define Hy exactly in the same way as above with ap = 0 and uj = 0,

dimg{z € E; a(z) =0} > s*. (3.6)

and hence m; = 0. We define J, {n’}, {c}}, {d;l} in the same way as above.
Then, we have

o il
Hko - C(J/a7 {n;}a {C;'}a {d] })
We can also prove

1
dimpy C* (I, {n’;},{c;}) = * 3.7
mpg (Jaa{n]}7{cj}) t— f(O) S ( )
since N = N W and & = 6,77 O with k = ko + j as j — oo,
Take any 1 <141 < iy <nl. By (3.5), we have

dgl'/ = dpd_1 = 5,2__{(0”0(1) and 05 = (5,2__{(0”0(1).

Since '
io
1/ ¢ / il /
di% 1 <8 Y, d <o,
i=11+1
and
1/ ¢ / . . / /
we have

log(dj_1(i2 —i1)/n5) _ (t— £(0) + o(1)) log &1

. = = =1+o0(1
log(d% 1 > 2 11 d;.') (t — f(0) 4+ o(1))log dk_1 (1)
as j — oo. Hence for any € > 0, there exists jy such that
10 5/- 29 — 1 n/.
g( ]71( 2 i2 1)/i,3) 1.
log(éj—l Zz‘1+1 dj )
for any j > jo. Therefore by (3.7) and Lemma 2, we have
dimg HY > #3*(1 —€)
H ko_t—f(ao) €).
Since € > 0 is arbitrary, we have (3.6). O

13



Proof of Corollary 1
By Theorem 4,

*

1—a
dimg F > sup ———— s
acjon] t — f(a)

holds clearly. We prove the opposite inequality. Take any nn > 0. By
Theorem 3, for any a € [0, 1], there exists €, > 0 such that

1—a
t—f(a)

Since F' is a compact set, there exists a finite covering of [0, 1] consisted of
intervals of the form (a — €,, a + €,). It follows that

*

dimpg{z € E; a — ¢, < a(r) <a+¢} < s +.

1—

dimy F < sup ST d + .
a€l0,1] t— f(a)

Since i > 0 is arbitrary, we have

1—a
dimg F < sup ———— s%,
a€l0,1] t— f(a)

which completes the proof. O
The following examples were essentially discussed in [9].

Example 1. Let real numbers A\, ¢, s with A > 1, t > 1, 0 < s < 1 be
given. Let kg be a sufficiently large integer. Define

= (AT e = AT (=10,

Let p be a real number such that 0 < p < (1 — s)(t — 1). Define d, (i =
1727"' 7nk; k:1727)by

dh+d3 4 d = (g — i+ 1) 7D, (3.8)

Then, we have a homogeneous Moran set C(Jy, {nx}, {cx}, {d}}) satisfying
the conditions (x1) and (%2) with this ¢, s* = s and the spacing function
fla) =pa+t—1—np.

To prove this, let a; = a(i, k), b; = b(i,k) (i = 1,2,--- ,ng) for an arbi-
log(ng —i+1)

trary k =1,2,---. Sincei—1 = ”k—n}g—ai, we have 1—q, — 108k =i+ 1)
log ng,
Moreover, by (3.8),
Sho1(ng —i+ 1) D = §b
Hence,
p log(ng—i+1) p (1—a;)logn,
s(t—1) log 03,1 s(t—1) —logdr_1

14



.
Figure 2: local dimension of E at a
Then, the following f; becomes a pre-spacing function:
fr(a)=t—1- s(t’i 5 (1__15g)<152g?k (a € [0,1).
log ng

Since converges to 1 as k — oo uniformly in a, the spacing

—s(t —1)log dr—1
function f is determined as the limit of fi so that

fla)=t—1—-p(l—a)=pa+t—1—p.

In this case, we have

. 1—a 1—a 1
dimg F = sup ————— s = sup s = s,
a€0,1] t— f(a) a€0,1] 1+p—pa 1+p
1—
where “sup” is attained at a = 0. Figure 2 is the graph of T
1+p—pa

Example 2. We consider the same setting as Example 1, except for {dﬁg}
Let w, p be real numbers such that w > 1, 0 < p < (1 —s)(t — 1). Define

d%/, i d% TR d% _ 5Z(_l(ig(nk—i+1)/lognk)w‘ (39)
Then, we have a homogeneous Moran set C(Jy, {nx}, {cx}, {d}}) satisfying
the conditions (x1) and (%2) with this ¢, s* = s and the spacing function
fla)=p(l—a)”+t—-1.
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Figure 3: local dimension of E at a in the case p(w — 1) > 1

To prove this, let a; = a(i, k), b; = b(i, k) (i = 1,2,--- ,nyg) for an arbi-

1 —1+1
trary k =1,2,---. Since 1 —a; = M, by (3.9), we have
log nj

51+p(log(m—i+1)/lognk)w _ gtbi
k—1 =O0k_1-

Hence,

log(ng —i+1)\"
—1-b=p|——F—) =p(l—a)"”
t b p( log 61 p(1l —ai)

Then, the following f; becomes a pre-spacing function:
fel@) = t—1-p(1—a)* (ac[o,1]).

Hence, f(a) =t —1—p(1 —a)" is the spacing function.
In this case, we have
1—a 1—a
dimg F= sup ————s= sup —————§
aco) t = f(@) aepoy 1+ p(1—a)®
s/(1+p) if plw—-1) <1

_ . 1/w
v 1< ! )> s ifplw—1)>1"

w \plw—1

where “sup” is attained at a = 0 in the former case and at a = 1 — (p(w —
1—
1))—1/w in the latter case. Figure 3 is the graph of mg in the

case of p(w —1) > 1.
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