MUTUAL SINGULARITY OF SPECTRA OF DYNAMICAL SYSTEMS GIVEN BY "SUMS OF DIGITS" TO DIFFERENT BASES

Teturo Kamae

0. Summary

In [3] , it was proved that if (p,q) = 1 and a and b are irrational numbers, then the following two arithmetic functions α and β have mutually singular spectral measures :

$$\alpha(n) = \exp (2\pi i \ a \ s_p(n))$$

$$\beta(n) = \exp (2\pi i \ b \ s_q(n))$$

$$(n \in N)$$
,

where $s_p(n)$ $(s_q(n))$ is the sum of digits in the p-adic (q-adic) representation of n. Here we prove a slightly stronger result that the two shift dynamical systems corresponding to the strictly ergodic sequences α and β have mutually singular spectral measures. That is to say that for any $f \in L_2(\mu_\alpha)$ and $g \in L_2(\mu_\beta)$ such that $\int f d\mu_\alpha = \int g d\mu_\beta = 0$, where μ_α and μ_β are the measures on T^N (T being the unit circle in the complex plane) for which α and β are generic with respect to the shift, respectively, the spectral measures Λ_α, f and Λ_β, g are mutually singular, where $\Lambda_\alpha, f^{(\Lambda_\beta, g)}$ is the measure Λ on R_Z determined by the relation $(T^n f, f)_{\mu_\alpha} = \int e^{2\pi i \lambda n} d\Lambda(\lambda)$ $((T^n g, g)_{\mu_\beta} = \int e^{2\pi i \lambda n} d\Lambda(\lambda)$) for all $n \in \mathbb{N}$

(T denoting the shift as well as the isometry on L_2 induced by the shift).

1. Mutual singularity of spectra and disjointness

Given two dynamical systems $X=(X,\mu,S)$ and $Y=(Y,\nu,T)$. We consider, in the obvious way, $L_2(\mu)$ and $L_2(\nu)$ as subspaces of $L_2(\mu\times\nu)$. For $f\in L_2(\mu\times\nu)$, H(f) denotes the closed subspace of $L_2(\mu\times\nu)$ spanned by f, $(S\times T)$ f, $(S\times T)^2$ f,... The following theorem is essentially due to A.N. Kolmogorov.

Theorem A.

 $\ensuremath{\mathbf{X}}$ and $\ensuremath{\mathbf{Y}}$ have mutually singular spectral measures if and only if

- (1) X and Y are disjoint in the sense of H. Furstenberg, and
- (2) for any f ε L $_2(\mu)$ and g ε L $_2(\nu)$ such that $\int f d\mu = \int g d\nu = 0 \quad , \quad f \in H(f+g) \ .$

Proof:

We prove only that the mutual singularity of spectra implies the disjointness, since the other parts follows easily from [4]. Assume that X and Y are not disjoint. Then there exists a probability measure $\xi \not= \mu \times \nu$ on X x Y which is S \times T-invariant and satisfies that $\xi \mid_X = \mu$ and $\lambda \mid_Y = \nu$. Take $f \in L_2(\mu)$ and $g \in L_2(\nu)$ such that $\int f d\mu = \int g d\nu = 0$ and $(f,g)_{\xi} \not= 0$. Since

$$\frac{1}{N} \left| \left| \sum_{1}^{N} e^{-2\pi i \lambda n} S^{n} f \right| \right|_{\mu}^{2} d\lambda \rightarrow \Lambda_{x,f}$$

$$\frac{1}{N} | | \sum_{1}^{N} e^{-2\pi i \lambda n} T^{n} g | |_{\nu}^{2} d\lambda \rightarrow \Lambda_{y,g}$$
(weakly)

MUTUAL SINGULARITY OF SPECTRA

and the property of the affinity $\rho[2]$, we have

$$\begin{array}{l} {\rho \left({{\Lambda _{X,f}}} \right)},{\Lambda _{Y,g}} \\ \ge \overline{\lim _{N}} \, \int_{\frac{1}{N}}^{1} \, \left| \, \right| \sum\limits_{1}^{N} \, {e^{ - 2\pi i\lambda n}} \, \, {S^{n}f} \right| \left| \, \mu \, \left| \, \right| \, \sum \, {e^{ - 2\pi i\lambda n}} \, \, {T^{n}g} \right| \left| \, {\rho \left({\lambda _{X,f}} \right)} \right| \, d\lambda \\ \ge \overline{\lim _{N}} \, \int_{1}^{1} \, \left| \, \sum\limits_{1}^{N} \, {e^{ - 2\pi i\lambda n}} \, \, {S^{n}f} \right| \, , \\ \sum\limits_{1}^{N} \, {e^{ - 2\pi i\lambda n}} \, \, {T^{n}g} \right|_{\xi} \left| \, d\lambda \right| \\ \ge \overline{\lim _{N}} \, \frac{1}{N} \, \left| \, \int \left(\sum\limits_{1}^{N} \, {e^{ - 2}} \, i \, n \, \, {S^{n}f} \right) \, , \\ \sum\limits_{1}^{N} \, {e^{ - 2\pi i\lambda n}} \, \, {T^{n}g} \right|_{\xi} \left| \, d\lambda \right| \\ = \left| \, \left({f,g} \right)_{\xi} \right| \, > \, 0 \\ \end{array}$$

Thus $\Lambda_{x,f}$ and $\Lambda_{y,g}$ are not mutually singular.

2. Disjointness of α and β

To prove the disjointness of the two dynamical systems given by α and β in §0 , it is sufficient to prove that any γ and δ in the orbit closures of α and β , respectively, with respect to the shift are independent of each other. The proof by J. Besineau [1] for the independency of α and β works well for these γ and δ . Thus, we have the disjointness of α and β .

3. Mutual singularity of dynamical systems given by α and β

Let (X,μ,S) be a dynamical system. Let $\,f\,$ and $\,g\,$ be in $L_2(\mu)$. Then we have

Lemma

- (1) $\Lambda_{cf} = |c|^2 \Lambda_f$, where c is a constant .
- (2) $\Lambda_{f+g} \leq 2\Lambda_f + 2\Lambda_g$.
- (3) $||\Lambda_f \Lambda_g|| < ||f-g||^2 + 2||f|| ||f-g||$, where $||\Lambda_f \Lambda_g||$ is the total variance of the measure $|\Lambda_f \Lambda_g|$.

Proof:

(1) is clear. To prove (2), we have

(3) follows from the fact that

$$\begin{split} &|| \Lambda_{\mathbf{f}} - \Lambda_{\mathbf{g}} || \leq \underbrace{\lim_{N} \int_{1}^{1} \left| || \sum_{1}^{N} e^{-2\pi i n \lambda} S^{n} \mathbf{f} ||^{2} - || \sum_{1}^{N} e^{-2\pi i n \lambda} S^{n} \mathbf{g} ||^{2} \right| d\lambda \leq \\ &\leq \underbrace{\lim_{N} \int_{1}^{1} \left(|| \sum_{1}^{N} e^{-2\pi i n \lambda} S^{n} (\mathbf{f} - \mathbf{g}) ||^{2} + \\ &+ 2|| \sum_{1}^{N} e^{-2\pi i n \lambda} S^{n} (\mathbf{f} - \mathbf{g}) || || \sum_{1}^{N} e^{-2\pi i \lambda n} S^{n} \mathbf{f} ||) d\lambda \leq \\ &< || \mathbf{f} - \mathbf{g} ||^{2} + 2|| \mathbf{f} - \mathbf{g} || || \mathbf{f} || \end{split}$$

Because of this lemma, to prove the mutual singularity of dynamical systems given by α and β , it is sufficient to show that $^{\Lambda}{}_{\alpha},f$ and $^{\Lambda}{}_{\beta},g$ are mutually singular for f and g of the form

$$f(\gamma) = \gamma^{M_0} (T\gamma)^{M_1} \dots (T^k \gamma)^{M_{K}} - C$$

$$g(\gamma) = \gamma^{N_0} (T\gamma)^{N_1} \dots (T^k \gamma)^{N_{K}} - D$$

(k=1,2,..., M $_i$, N $_i$ ϵ Z ; C,D are constants such that $\int\!f d\mu_\alpha \;=\; \int\!g d\mu_\beta \;=\; 0)$

Let $\ \phi$ and $\ \psi$ are sequences such that

$$\phi(n) = \exp 2\pi i (M_0 s_p(n) + M_1 s_p(n+1) + ... + M_r s_p(n+k)) - C$$

$$\psi(n) = \exp 2\pi i (N_0 s_q(n) + N_1 s_q(n+1) + ... + N_r s_q(n+k)) - D$$

Then $\Lambda_{\alpha,f}$ and $\Lambda_{\beta,g}$ are the spectral measures Λ_{φ} and Λ_{ψ} of the sequences ϕ and ψ , respectively, in the sense of [2]. Let

MUTUAL SINGULARITY OF SPECTRA

$$A(\ell) = \exp 2\pi i (M_0 s_p(\ell) + \dots + M_k s_p(\ell))$$

$$B(\ell) = \exp 2\pi i (N_0 s_q(\ell) + ... + N_k s_q(\ell))$$
.

Then, it is easy to see that ϕ_L and ψ_L converge to ϕ and ψ , respectively, as $~L \, \rightarrow \, \infty ~$ in the sense of Besicovich norm. Therefore $\Lambda_{\phi_L}(\Lambda_{\psi_L})$ converges to $\Lambda_{\phi}(\Lambda_{\psi})$ in the sense of total variance (cf. Lemma). Therefore our conclusion follows from the statement that $~\Lambda_{\phi}^{}_{L}~$ and $~\Lambda_{\psi}^{}_{L}~$ are mutually singular. The last statement can be proved in the following way.

<u>Case 1</u>: E = F = 0. Then ϕ_L and ψ_L are cyclic sequences whose cycles are coprime. Thus $~\Lambda_{\phi}^{}_{L}~$ and $~\Lambda_{\psi}^{}_{L}~$ are mutually singular

Case 2 : $E \neq 0$, F = 0 . Since

$$(*) \ d\Lambda_{\phi_L + C}(\lambda) = \left| \frac{1}{p^L} \sum_{k=0}^{p^L - 1} A(k) e^{-2\pi i \lambda k} \right|^2 d\Lambda_{\eta}(p^L \lambda)$$

where $\eta(n)$ = e p(n) is known [2] to have a continuous spectral measure, $\Lambda_{\phi_L} + C$ is continuous. This implies that C = 0 and $\Lambda_{\phi_{I}}$ is continuous. Since $\Lambda_{\psi_{I}}$ is discrete, $\Lambda_{\phi_{I}}$ and $\Lambda_{\psi_{I}}$ are mutually singular.

Case 3: E = 0, $F \neq 0$. Parallely as in case 2.

Case 4 : E \ddagger 0 , F \ddagger 0 . Then as was shown in case 2, C = D = 0 . Let n be as in case 2 and $\zeta(n) = e^{2\pi i \ Fb \ s} q^{(n)}$. It is known[3] that Λ_{η} and Λ_{ζ} are mutually singular. Since (*) and

$$d\Lambda_{\eta}(p^{L}\lambda) = \left| \frac{1}{p^{L}} \sum_{\ell=0}^{p^{L}-1} e^{2\pi i (Ea s_{p}(\ell) - \ell\lambda)} \right|^{-2} d\Lambda_{\eta}(\lambda) ,$$

 $\Lambda_{\phi_{\mathrm{L}}}$ is absolutely continuous with respect to Λ_{η} .

Parallely, Λ_{ψ} is absolutely continuous with respect to $\Lambda_{\zeta}.$ Thus Λ_{φ} and Λ_{ψ} are mutually singular. Thus we proved

Theorem B.

The two dynamical systems given by α and β in §0 have mutual 1y singular spectral measures.

References :

- [1] J. Besineau, Indépendance statistique d'ensemble lié à la fonction "somme des chiffres", Acta Arithmetica XX (1972)
- [2] J. Coquet, T. Kamae and M. Mendès-France, La mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France (to appear)
- [3] T. Kamae, Sum of digits to different bases and mutual singularity of their spectral measures,
 Osaka J. Math. (to appear)
- [4] A.N. Kolmogorov, Stationary sequences in Hilbert space (Russien), Bull. Math. Univ. Moscow vol. 2 n° 6 (1941)

KAMAE Teturo
Department of Mathematics
Osaka City University
Osaka, Japan