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We study the amount of information obtained by a set of relative pairwise
comparisons. From this point of view, two kinds of entropy are introduced for
graphs.

1. INTRODUCTION

It is an interesting problem to ask the amount of information obtained by
relative pairwise comparisons. For example, consider 3 balls ¢, 7 and £ with
weights x,, x, and x,. Compare the weights of ¢ and 7 to know which is
heavier. Since we have no prior information on the weights, we expect 2
kinds of results x, < x, and x, > x, with same probability 1/2. Here, we
assume that the probability of x,=x_ is 0. Thus, the comparison has
entropy 1 in the binary base. Now, consider the set of 2 comparisons ¢ to 7
and 7 to £ Since we have no information on the weights, we can assign same
probability 1/6 to any of the 6 cases x,<x, <X, x,<x;<Xx,,
X, <X, <Xypy X, <X <X, X, <X, <x, and x, <x, <x,. Therefore, we
have 4 kinds of results x, <x, <x;, x,<x,>Xx;, x,>x <x; and
x, > x_ > x, with probability 1/6, 2/6, 2/6 and 1/6, respectively. Thus, the
entropy of the comparisons is

=1.918

in the binary base. This set of comparisons can be represented as the graph
with 3 vertices o, 7, £ and 2 edges {0, T} and {r, &}. The entropy of the graph
is defined as the entropy of the corresponding comparisons as above. This
entropy will be called the combinatorial entropy of the graph.
In other words, let G be a graph on a finite set Z. That is to say that G is
a family of two points subsets of Z. Denote X(G) = (), a. An orientation
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on G is a pair 8=(6,,0,) of mappings 4,:G—> 2% (i=1,2) such that
a=1{08,(a), 8,(a)} for any a € G. Throughout this paper, we fixed X # ¢,
G # ¢ and an orientation ¢ on G as above. Let X; = {X_ ;0 € X'} be a family
of independent and identically distributed random variables with the
standard normal distribution N(0, 1). Define

Y,= (P(on(a) - Xo,(a))

for any a € G, where

1 x>0
p(x)=¢ 0 x=0
—1 x <0.

Then, the combinatorial entropy H(G) of G is defined as the Shanon’s
entropy (in the natural base) of the family of random variables
Y;={Y,;a € G} It is clear that the definition is independent of the orien-
tation 6 on G. In general, the relative information (X, Y) between random
variables X and Y is defined by

dP
log ——%Y___4p ,
B aP, x Py

IX, V)= j
where P, , Py, P, are distributions of random variables (X, Y), X and Y,
respectively. Then it holds that

H(G)=I(X;, Y;).
Let & < 2. We define the combinatorial entropy H*(G) of G in E by
HE(G)=1(Xy, Yy).

This definition is independent of the orientation § on G. It should be
remarked that the assumption that each X is normally distributed is not
essential at all. It may be replaced by any nonatomic distribution without
changing the notion of the combinatorial entropy.

Another approach to the problem is that we assume that our observation
in each comparison is the difference between the pair with a normally
distributed error instead of the order. Define a family of random variables
Zs,=1{Z,;a0€ G} by

Z,=Xg,a ‘Xo,(a) + &,

where {¢,;a€ G} is a family of independent and identically distributed
random variables which is independent of X; with distribution N(0, 1/1) for
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some A > 0. We define the A-Gaussian entropy H,(G) of G and the A-
Gaussian entropy H3(G) of G in Z < X by

H\(G)=1(X;, Zg)
and
HE(G)=1(Xz, Z),

respectively. These definitions are independent of the orientation # on G. A
subgraph K of G (i.e., K = G) is called sufficient at o in the combinatorial or
Gaussian sense if H°(K) (=H'"'(K))= H°(G) or H{(K)= HS(G) for any
A > 0, respectively, where g € Z.

Our aim is to solve the following problems:

Problem 1. Given a class of graphs. Find a graph which maximizes the
combinatorial or A-Gaussian entropy for any 1 > 0 in the class.

Problem II.  Given a graph G and o € Z(G). Find the minimum sufficient
subgraph of G at o in the combinatorial or Gaussian sense.

Problem 1I1. Find relations between the combinatorial entropy and the
Gaussian entropy.
In this paper, we give partial solutions to the problems.

2. PROBLEM |

Let & c X. We define matrices Ag(A) = (a,4)p5c¢ and AZ(4) =
(daﬂ)a,BEGUE by

1424 ifa=p
aaB = O lfa ﬂﬂ = ¢
(=12 if #(a M ) =1 and §;(a) = 6,(f) for some
Lj=1,2,
and ‘
Q.3 ifecGandfeGC
dopy= { Adyg ifee Zandfe z
(—=1)A if a = 6,(8) or = 6,(a) for some i = 1, 2.
THEOREM 1.

H,(G)=1%log det A;(2)
H3(G)=H,(G)— $logdet 45(A) + (#Z/2) log A.



358 TETURO KAMAE

From this theorem, it follows that detA,(A) and det AZ(A) are
independent of the orientation # on G and det 4;(4) > 1 because of the
nonegativity of the entropy. Denote

Po{A)=det 4,(1)
and call it the information polynomial of G.

Proof. Let #G=n and #X =m. Let x; ={x,;0€ 2} and z;={z,;

a € G} be observed values of random variables X; and Z, respectively. The
density functions of Xy, Z; and (X, Z;) are denoted by p(x;), p(z;) and
P(x5, zg), respectively. The conditional density of Z, given X; is denoted by
p(zg|xz). Then we have

1 " a/2yz 2
xXe)= (—— e~ cerXs
p(xx) (27_[ )

and

,1 n/2
— — 2
P(zglxg)= <_> e~ A/ Laco (Za+Xg @) = X0ya))?

2n

It holds that

— p(xzazG)
H,(G)= H log 70 plzg) plxy, zg) dxy dzg

-ﬂ log ‘D( d )z) D(xy, z5)dx; dzg

:J (J‘ logp(ZGixx) -p(chx}:) de) p(xz) dx

— {108 p(z) - Plzg) dz
=1,—1,.
Since
f log p(zg|xz) - P(z6lxy) dzg

A

n A, 1/2
=—2—log > Z J(Z + X9 (@)~ Xoya))’ <27t)

a€G

X @~ A 2zaXa (a)= X050 ? dz,

n A n
:——l —_— -—:——1 —_—
2 %7 2,,;0/1 2 %72 2
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we have

n A n
I = log 22
=y log -

On the other hand, since z, is normally distributed with mean Q and
covariance matrix (1/4) 4., we have

/1 n/2
p(zg) = (2_> (detA,)~'/? e~ WD 4Gz,
T

where
Ag'zg] = ‘\: a*? ZaZp
a€eC
BeG
and
A= (@)
Therefore,
n A 1 A
I,=—log————logdetd, —— N a°®| z_z,p(z;) dz,
2 2 27_[ 2 G 2 a:-(; J 8 (G) G
PR 20l
n - a
= log L logdet A, —— N gosfas
210g2n 3 ogdetAd, 2;Ga ]
P e
n n
——z—log—zg—.TlogdetAG——z—.
Thus,

H,(G)=3logdet 4.

The other equality can be proved similarly.
For n > 1, a graph which is isomorphic to

B,={{1,2},{2,3},..., {n,n + 1}}
is called an n-line. For n > 3, a graph which is isomorphic to
C,={{1,2},12, 3}y {n— 1, 1}, {n, 1}}

is called an n-cycle. For graphs G and K, the direct sum G @ K is defined as
a graph H=H,U H, such that Y(H,) " Z(H,) = @, H, is isomorphic to G
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and H, is isomorphic to H. The above K is determined uniquely up to
isomorphism. Let B(n, k) be the class of graphs which are isomorphic to
B, ®B, ®-- @B, forsome n,n,,.,n withn, +n,+--- +n,=n. Let
C(n) be the class of graphs which are isomorphic to C, ®C, ® -+ ®C,,
for some k and n,, n,,..,n, with n, + n, + --- + n, = n.

THEOREM 2. For any positive integers n, m, k and h withn+m==k + h
and |n —m| < |k — h|, it holds that
H(B,)+ H(B,) > H(B,) + H(B)),
and
H,(B,)+ Hy(B,) > H;(B,) + H,(B))

for any 4> 0.

COROLLARY. The following three conditions on a graph G € B(n, k) are
equivalent:

(1) H(G)=max{H(K); K € B(n, k)},
(2) H,(G)=max{H (K); K € B(n, k)} for any 1 > 0, and

(3) G is isomorphic to

Bd® ®Bd®Bd+1® ®Bdu’

where d = |n/k] and r=k(d + 1) — n.
Proof. For any positive integers n and m with n < m, we have
H(B,, ) — H(B,)= H(Yln+ 1,n+2l| YB,,)

>H(Y(m+1,m+2]| YB,,,) =H(Bm+1) - H(Bm)

One-half of the theorem follows from this fact. The other half follows from
the following Lemma 4.

We denote b,=Py () (n=1,2,..) and ¢, =P (4) (n=1,2,.). Then
b,>1 (n=1,2,.) and ¢, > 1 (n=3,4,..) for any A >0. We also define
by=1,b_,=0,b_,=—4"%¢c;,=1+44,¢,=1and ¢,=0.
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LemMmA 1. It holds that

1+24 4 0
A 1424 —A
—A
b, = nx1)
0 ) (n>
—A 1+24
(size n)
and
1+24 —A -
—A 1424 —A 0
-2
¢, = n>3)
0 —A (
) -4 1424
(size n)

Proof. Clear from the definitions.

LemMMA 2. (1) For any n>0, we have

=b,— A%, _,— 2"
(2) For any n,m > —1, we have
bn+m=bnbm_'12bnllbm 1°

Proof. Clear from Lemma 1 and the definitions of b, (n =0, —1,-2)
and ¢, (n=2, 1, 0).

LeEmMA 3. For any n, m, k, h > —1 such that n—k=h—m=p>—1,
we have
bnbm—bkbit:isz—l(bkbm~l —bk—lbm)'
Proof. By Lemma 2, we have

b,=byb,—Ab, b

p—12
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and
b, = bmbp-/lzbm_lb

p—1
Putting them into the left-hand side of our equation, we have the right-hand
side.

LEmMMA 4. For any n, m, k, h>—1 such that n+m=k+h and
k < min{n, m} + 1, we have

bnbm~bkbh:l2k+2bn—k—1bm—kvl'
Thus, if k < min{n, m}, then b,b,, > b,b, for any A > 0.
Proof. Applying Lemmas 2 and 3, we have
bnbm—bkbh='12bn—k~1(bkbm—l —bk—lbm)

= ’14bn—k—1(bk;1bmf2 - bk—2bm— 1)

:/‘LZkbnAkfl(blbm—k—bobm—-k+l)
:A’Zkbn—k—l(blbm—k-bm—k+l)
:AZkubn—kqu-k—x-
THEOREM 3. For any n,m >3 and A > 0,
Hy(Cpy ) > Hy(C,) + Hy(C)

Proof. Our theorem follows from the following Lemma 10.

CoroLLARY. For G € C(n),
H,(G)=max{H,(K); K € C(n)}
Sfor any A > 0 if and only if G is isomorphic to C,,.

LEMMA 5. For 1 < n < m, we have
Coim— CuCm = 24", +2A"c, —A*c,,_, — 44"+,
Proof. By Lemma 2, we have
Cnsm — CnCm
=byom— A by — 24T — (b, — A%, _ )b — A%D,, _5)
+2A%,, + 2A™¢,
=—2A%, b+ A’b,b,_,+ A%, _,b,—2A""" + 21", + 24" c,,.
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Since by Lemma 4,
—by byt byby_=A"b s
and
—bp_ b+ b, by =—A""b, .,
we have
Cusm = CnCrm
=2A"¢c,, + 2A™c, — A* (b, n—A’b,_, ) —2A"H™
=2"c,, + 2A"c, — A*c,,_, — 4A"F .

n+m

By b, , and ¢, ,, we denote the coefficients of 1* in b, and c,, respec-
tively. We denote b, < b, if b, , < b,, , for any integer %.

LEMMA 6. For any n> —2, we have b, ,=n+ 1, and for any n > 0, we
have c, ,=0.

Proof. By definition, b_, ,=—1 and b_, ,=0. Let n>0. Assume
that b, , =k + 1 for any -2 kgn— 1. Since by Lemma 2,

b,=bb,_ , —i%byb,_,
=(1+20)b,_, —A%,_,,
we have
byn=2b —b
=2n—(n-1l)=n+1

n—l,n—1 n—2,n—2

Hence by Lemma 2, we have
cn,n:bn,n_bn—Z,n—z'_2
=n+1)—(n—-1)—2=0

for any n > 0.

LEmMMA 7. For —1<n<mandp>1, we have

0<AP(b,, — A" "b) < b, , — A" "B, ,

m+p
Proof. 1t is sufficient to prove that

0< i(brhu _/lbn) < bn+2 -;Lbn+l

409/97/2-5
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for any n> —1. We prove this by the induction on n. For n=—1, this is
clear. Assume that n>0 and this is true up to n— 1. Then, we have
b,,1>0and b,,, —Ab, > 0. Since

buyr=(1+20)b,,, ~ A%,
we have
buyy = Abyyy=Ab,, —Ab,) + by > 4By, — AD,) > 0,

which completes the proof.

LEMMA 8. For any n> 1, we have c,> 0.

Proof. Since

a=b,— A%, _,— 2",
b,—A%,_,> 0,

and
cn.n = 0’
we have ¢, » 0.
LEMMA 9. For any n > —1, we have
bywr=1n'+3n* +3n,
and for any n> 1, we have ¢, ,_, =n’.

Proof. Since b, ,=n+ 1 and
b,=01+2)b,_,—A%,_,
for any n > —1, we have
byn1=n+2b, 2= by 243
for any n > 0. Therefore,
byo=tn'+3n°+4in
holds by the induction on n. Since ¢, = b, — A’b,_,, we have
¢ =byu 1= by 2 s

=4 hnt b hn == 1) 4= )P - 1)

n,n—1

=n’
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LemMA 10. For any n, m 2> 1, we have ¢, , > c,C,, Gnd ¢, ,, # C,Cpy-
<

Proof. We may assume n < m. By Lemmas 5 and 8, we have
Cosm— CnCm > A", —A"c,,_,) — 44"+

Since the (n + m)th term in ¢,,, ,, — ¢, ¢, is O by Lemma 6, ¢, ,, — c,c,, > 0
follows from c¢,, — A"c,,_, » 0. On the other hand, by Lemmas 2 and 7,

Cm —Ancm—n = (bm _'lnbm-n) - '{z(bm—z - ’lnbm——nvz) > 0.

The last statement follows from the fact that by Lemma 9,
Cosmmim_1=(n+m)* >0, while the (n + m — 1)th coefficient in c,c,, is 0
by Lemma 6.

3. ProBLEM II

For random variables X, Y and Z, we denote by Py, and Py, the
conditional distributions of X given Y and Z, respectively. Suppose that Z is
a function of Y. Then it holds that

I(X,Y)= jlogd(dp“

Py)

= [ log dX'YdP

dP,

ﬁj( JlogdPX dPX,”)dP”

> |t{—log ~LdP )dP
/j( f dPyy  TE) T
B dPy,,
= f lOg d—PX— dPX.Z
=X, Z),
where the equality holds if and only if

dPyy dPy,

dPy dP,
holds almost surely with respect to P, ,. That is to say that
I(X,Y)=1I(X, Z) if and only if Py, is a function of Z, or equivalently, X

and Y are conditionally independent of each other given Z.
For a graph G, 0 € X(G) and a € G, we call that a is neutral in the
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combinatorial or Gaussian sense for ¢ in G if X, and Y, or X and Z, are
conditionally independent of each other given Y\, or Zg\,, for any 4 > 0,
respectively.

LEMMA 11. Let
G, = {a € G; a is not neutral in the combinatorial sense for o in G} and
G, = {a € G; a is not neutral in the Gaussian sense for ¢ in G}.

Then, G, and G, are the minimum sufficient subgraphs of G at o in the
combinatorial and Gaussian sense, respectively.

Proof. For any a & G,, since
Pyive= anw(;\m’

Py |y, does not depend on Y,. Hence, Py ,_is a function of Y, . Thus,
H?’(G,)= H°(G) by the above argument. To prove that G, is minimum, let
K be a subgraph of G such that H°(K)= H?(G). Take any a & K. Then
since

H(K) < H°(G\{a}) <H?(G),

we have H°(G\{a}) = H°(G). Hence, by the above argument, X, and Y, are
conditionally independent of each other given Y;y,). Thus, G, =K. The
other half of the lemma can be proved similarly.

For »,, X, — Z, define a graph Q(Z,, Z,) by

o, 2)={rnthre Xt X, 1+{}.

THEOREM 4. Let G be a graph, 0 € 2(G) and a € G. Then, a is neutral
Jor o in G in the combinatorial sense if there exist X, X,, X, < X(G) such
that

(1) Z,uz,u2;=%2(G)and Z;,NZ,; =9 (i+))
(2) oeX,,

3) acx,,

(4) GNQE,Z)=9,

(5) QEZ,,%,)cG.

Proof. Denote H=Q(X,,2;), K=0(X,,2;) and L =G\(HUK). At
first, we show that our theorem follows from the fact that X; ;, and Yy are

conditionally independent of each other given Y. Assume this fact. Since Y,
and (X,, Y, ) are functions of Xy ; , we have

Py iv,=P

Y Yk
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and
Py oviivy = Proviivaux:
Therefore,
P = wa
Xl Y P
Y |¥y
_ PXonL|YHUK -
PYL|YHUK Xol Yk L

Since

HULcG\la}jcGcHUKUL,

this implies that

PXUIG\(a) = PXUIG’

and hence, « is neutral for ¢ in G. Since
X}.‘, o (sz’ YH, YK)’

to prove that X; ; and Y are conditionally independent of each other
given Yy, it is sufficient to prove that X; and Y, are conditionally
independent of each other given Y,. We call x; = {x,;7€2,}€ R*:
consistent if x, # x, for any 7, { € X, with 7+ {. A relation 4 on a set X (i.e.,
Ac ¥ x X)is called an order on A if

(1) (r,7)€& A4 for any 7 € X, and
(2) (r,&)e A and (&, n)€ A imply (r,n)E A for any 7, &, n € 2.

In this case, (z,{) € 4 is also denoted as < ¢[A]. Let x; be consistent.
Then, it defines an order on X, denoted by [x, | by 7 <{[x; ] if x, <x,. In
general, for a graph E on X and an orientation w on E, we call
Ve=1yi;CEE}E {—1, 1}F consistent if there exists an order on X which
contains the relation

(1, EZX T {r, (Y EE, 1=y, ({r, &) and y, ;= (— 1)
forsomei=1,2

If y, is consistent, then the minimum order as above is denoted by | yz]. Let
orientations on H and K be given. Let y,, be consistent. We call y, consistent
with respect to yy if yy = (yy,yx) is consistent. We call x;, consistent
with respect to yy if xy, is consistent and if ¢ < t[y,] implies &< 7[x;,] for
any { v € X2,. It is clear that

P(Y, is consistent, Xy and Y, are consistent with respect to Y ) =1
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Therefore, to prove that X; and Y, are conditionally independent of each
other given Y,,, it is sufficient to prove that

P(Yy =yl Xz, =Xz, Yy=yu) = P(¥x =g\ Yy=ry)

for any consistent y,, consistent x; and yx with respect to y,. Let such y,,
xg, and yy be given. For 1€ Z;, define

m(z) = max{x;; EE€ X,, &< 1| yyl}
and

M(z) =min{x;; £ € Z,, < [ y,]).
For 7, { € 2,, we denote

T~ ¢l

if neither T< & [y,] nor <t {»,]. Then, it defines an equivalence relation
on X,. Let £,, 5,,.., £, be the equivalence classes of the relation arranged
so that T < & [ y,] for any 7 € &, and { € Z; with i <j. Then, it is easy to see
that m(r) = m(¢) and M(7) = M(¢) hold if t~ & [ p,]. We denote m; = m(r)
and M, =M(z) for any T€ 5, and i=1,2,..,n It is also easy to see that
m; <M, <m;, , <M, holds for any i =1, 2,.., n — 1. Then, we have

P(Y =nyX):25yH)= H P(YK:'= yKi‘xzz’y'H)

<M, forany r€ &)

T

]
—
x
=
!
<
>
3
N
bt

where K; = Q(&,, £,). Since the last term depends only on y,, we complete
the proof.

THEOREM 5. For a graph G, o6 € Z(G) and a € G, «a is neutral for o in
G in the Gaussian sense if and only if

det(ds,)se6.re @ \1an Lot = 0
where d,, are as in the paragraph preceding Theorem 1 with £ = {o}.
Proof. Since (X, Z;) is normally distributed with

det AS(A)

Var(Xo|Ze) =m0y ="
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there exists a linear function T of z; such that
P(xa|zc) —_ (27w)— 1/2 o= (1/20)(xg = T{z6N)?,

Therefore, to prove our theorem, it is sufficient to prove that 7(z,;) does not
depend on z,. On the other hand, since

p(xo’ ZG)
P(x,|zg) = =2
( | G) P(Zg)
_ (_/_l_)m (detAG(’l))l/2 o~ ADUGD Mxgrzal = A Hzgh
%) \detasa)
we have

x2—2x,T(zg) = —AvA%(A)"'[x,,z;] + (a term depending only on z;).
Therefore, the term —2x_ T(z;) comes from the first term in the right-hand
side. Hence, to prove that T(z;) is independent of z_, it is sufficient to prove
that (a, o) factor of A%(A)~' is 0. This is equivalent to say that (a, o)
cofactor of 4Z(4) is 0, which completes the proof.

COROLLARY. A sufficient condition for a € G to be neutral for o € X(G)
in G is that there exists = < X(G) such that
(1) acZ, and

(2) for any 1, EE€ Z, there exists an automorphism of GU Q(Z, E)
which transforms o to itself, T to & and & to 1.

Proof. Let G'=GUQ(Z,5). Take an arbitrary {={1,{} € Q(E, =
and an automorphism f of G’ such that f(c) =0, f(r) = ¢ and f(£) = 7. For
f={p,v} € G’, we denote f(f) = {f(p),/(v)} € G'. Take an orientation  on
G'. For € G' U {o}, define

1 if f=corif f€ G and y,(f(B)) =/ (v.(8))

1 else.

gB)y= 4

Then, f is a permutation on G'U {o}. Let (d;,) be as in the paragraph
preceding Theorem 1 with G’ and {o} for G and =. Then, it holds that

dypn = 8B)E(Y) dy,y

for any f, y€ G' U {o}. Let k=#{f € G’; g(f)=—1}. Note that g({) =—1.
Therefore, if we permutate the rows and the columns of the matrix

(dBY)BeG’,)'E(G’\lé))U(a]
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according to f at the same time, then it changes the sign at k rows and at
k — 1 columns, succeedingly. This implies that the determinant of the matrix
changes the sign, while it remains unchanged since the number of the
transpositions of rows together with columns is even since f(o) =0 and
f(©) =¢ Thus, the determinant is 0, which implies that ¢ is neutral for ¢ in
G’ by Theorem 5. Since { € Q(Z, £) was arbitrary, we have for any A > 0,

UG\Q(E, &)= H{(GU Q(Z, £))
by Lemma 11. Since
G\Q(Z,Z)cG\lalcGc GUQ(E, &),
this implies that for any 1 > 0,
H3(G) = H3(G\{a})
and hence a is neutral for ¢ in G by Lemma 11.

4. EXAMPLES

Take the orientations 6 on B, ;, (n>2) or C, (n>3) such that
0,({i,i+ 1})=ifori=1,2,.,n—1and 6,({n, 1}) = n. Here is an algorithm
to calculate H(B,) due to Harriet Fell. For n>1, y, € {—1,1}*" and
0 < k < n, define J,(y,,, k) by the following equation:

J,(1,0)=J,(—=1,1)=0
J,(1, D =J,(—1,0)=1
Jnfl(yﬁn,l’ i) (y[n,n+l} =1)
i<k
Jo(ps,, k)= {""

S Jocia, D) Pirn=—1):
izk

THEOREM 6 (HARRIET FELL).

Z S‘ J(.VB s k)

H(B,) =log(n+ 1)! — 7 1)' 2

n
X108 Y J,(Vg,s k)
k=0

Proof. For y; € {—1,1}", let [y, | be the order on {1,2,.,n+ 1}
defined in the proof of Theorem 4. Then, it can be proved by the induction
on n that J,(y,,, k) is the number of total orders which are extensions of
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[ys,] such that the number of elements in {1, 2,...,n} which is smaller than
n+ 1 in the order is k. Hence,

n

P(Yy =y, )= _(_;1_1)_' 2

n(yB,, k)

Our theorem follows from this fact together with the fact that
HB,) =~ P(Yy, =yp)108(Ys,=ys,)-
Y8,

There is a similar algorithm to calculate H(C,) due to Mitsuru Fukui. For
any yo € {—1,1}" (n>3)andj=0, L,.,n—1, define 7; y., € {—1, 11 by

(TYe ivieny =Viisiivivn

for any i= 1, 2,..., n, where the additions involving i or j are considered in
modulo n. Define ny. € {—1, 1} (n>4) by

(nnd){i,i+1} =Vii+ 1) (i=12,..,n—2)
and

(e n—1y=—L

For n>3, yc, €1{—1,1}" and 1<k<n—1, define J,(yc,,k) by the
followmg equation:

I ity =1Ly, =—1and (y,3 +3)/2=k
Hoe =y =
Z Jn—l(”yC,,’i) ify,n=—landy, _,,= 1
i<k
J" 14 ,k = -1 . .
( Cn ) \L.Jn—](”ycn’l) lfy(n.l}:y[n—l.n}:_l
i>k
0 else.

THEOREM 7 (MiTsuru Fukui).

n-1 n—1
H(C,) = logn‘—-—v NN (T ye, k)
n! Ye, i=0 k 1
n—1 n-—1
Xlog > N J(t;yc, k)

i=0 k=1
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ExampLE 1 (MITSURU Fukur).

H(B,) = 1.0000
H(B,) = 1.9183
H(B,) = 2.8250
H(B,) = 3.7298
H(B,) = 4.6344
H(B,) = 5.5388

H(C;) = 2.5850
H(C,) = 3.5849
H(C5) = 4.5106
H(Cy) = 5.4222

H(C,) = 6.3295
H(Cy) = 7.2351
H(C,) = 8.1400

(in the binary base)

EXAMPLE 2.

b,=1+21
by,=1+41+ 347

by=1+ 64+ 104% + 41°
b,=1+81+214% + 2043 + 51*
by=1+ 104 + 364% + 564° + 351* + 6A°
be=1+4 124 + 55A% + 1204° + 126A* + 564° + 7A°

ey =1+ 64+ 912
cy=1+ 84+ 20A% + 164°
cs=14 104 + 3547 + 50A° + 254*

ExampLE 3. It holds that
H(B,® C;)=H(B,) + H(C,) = 5.4100 < 5.4222 = H(C,),
while

H,(B;® C;)=log byc, =log(1 + 124 + 5542 + 1184° + 1144 + 364°)
Slog(1 + 124 + 5442 + 1124° + 10544 + 361%) = log ¢, = H,(C,)

for any 4 > 0.

ExaMPLE 4. By the corollary to Theorem 5, {1, 5} is neutral for 3 in Cj,
while it is not in the combinatorial sense, since

P(Yts,n =1{X;=x, Yian=Ysa=Yus=1 Y, 3= -1)

tends to 0 as x — oo and tends to 1/6 as x - —o0.
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5. UNSOLVED PROBLEMS

Problem 1. Does
H(C,, ) > H(C,)+ H(C,)
hold for any n, m > 3?

Problem 2. Are the converses of Theorem 4 and the corollary to
Theorem 5 true?

Problem 3. Does the combinatorial entropy determine the isomorphic
class of graphs?
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