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We study the amount of information obtained by a set of relative pairwise 
comparisons. From this point of view, two kinds of entropy are introduced for 
graphs. 

1. INTRODUCTION 

It is an interesting problem to ask the amount of information obtained by 
relative pairwise comparisons. For example, consider 3 balls u, 7 and ( with 
weights x,, x, and xl. Compare the weights of u and 7 to know which is 
heavier. Since we have no prior information on the weights, we expect 2 
kinds of results X, < x, and X, > x, with same probability l/2. Here, we 
assume that the probability of x,=x, is 0. Thus, the comparison has 
entropy 1 in the binary base. Now, consider the set of 2 comparisons u to 7 

and 7 to l. Since we have no information on the weights, we can assign same 
probability l/6 to any of the 6 cases x, < x, < xl, x, < xc < x,, 
x, < x, < xc, x, < Xl < x,, xl < x, < x, and xl < x, < x,. Therefore, we 
have 4 kinds of results x, < x, < xl, x, ( x, > xc, x, > x, < xI and 
x, > x, > xg with probability l/6, 2/6, 2/6 and l/6, respectively. Thus, the 
entropy of the comparisons is 

- ; log* ; - 2 log, H - f log, 3 - $ log* ; 

+ 1.918 

in the binary base. This set of comparisons can be represented as the graph 
with 3 vertices u, r, r and 2 edges (a, 7) and 17, <}. The entropy of the graph 
is defined as the entropy of the corresponding comparisons as above. This 
entropy will be called the combinatorial entropy of the graph. 

In other words, let G be a graph on a finite set Z. That is to say that G is 
a family of two points subsets of Z. Denote Z(G) = IJ,,, a. An orientation 
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on G is a pair 13 = (19,) 8,) of mappings 6’i: G + C (i = 1,2) such that 
a = {0,(a), 6’,(a)} for any a E G. Throughout this paper, we fixed z # 4, 
G # 4 and an orientation 0 on G as above. Let X, = {X, ; u E C} be a family 
of independent and identically distributed random variables with the 
standard normal distribution N(0, 1). Define 

ye = G&Y, -x9&J 

for any a E G, where 

x>o 
x=0 

x < 0. 

Then, the combinatorial entropy H(G) of G is defined as the Shanon’s 
entropy (in the natural base) of the family of random variables 
Yc = {Y,; a E G}. It is clear that the definition is independent of the orien- 
tation 19 on G. In general, the relative information Z(X, Y) between random 
variables X and Y is defined by 

where Px,v, Px, P, are distributions of random variables (X, Y), X and Y, 
respectively. Then it holds that 

H(G) = Z(X,, Yc). 

Let E c C. We define the combinatorial entropy HE(G) of G in S by 

H’(G) = Z(X, , YG). 

This definition is independent of the orientation 0 on G. It should be 
remarked that the assumption that each X, is normally distributed is not 
essential at all. It may be replaced by any nonatomic distribution without 
changing the notion of the combinatorial entropy. 

Another approach to the problem is that we assume that our observation 
in each comparison is the difference between the pair with a normally 
distributed error instead of the order. Define a family of random variables 
Z,= (Z,;aE G} by 

z, = XOZ(4 - xcl,w + En 3 

where {e ~; a E G) is a family of independent and identically distributed 
random variables which is independent of X, with distribution N(0, l/n) for 
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some 1 > 0. We define the I-Gaussian entropy H,(G) of G and the A- 
Gaussian entropy H:(G) of G in S c 2 by 

H,t(G) = W-z 3 Z,> 

and 

H.:(G) = 1(X,, Z,), 

respectively. These definitions are independent of the orientation 8 on G. A 
subgraph K of G (i.e., K c G) is called suflcient at u in the combinatorial or 
Gaussian sense if H”(K) (=H’“‘(K)) = H”(G) or HS;(K) = HS;(G) for any 
J. > 0, respectively, where CJ E C. 

Our aim is to solve the following problems: 

Problem I. Given a class of graphs. Find a graph which maximizes the 
combinatorial or Il-Gaussian entropy for any ,4 > 0 in the class. ’ 

Problem II. Given a graph G and CJ E C(G). Find the minimum sufficient 
subgraph of G at u in the combinatorial or Gaussian sense. 

Problem III. Find relations between the combinatorial entropy and the 
Gaussian entropy. 

In this paper, we give partial solutions to the problems. 

2. PROBLEM I 

Let E c Z. We define matrices A,(1) = (aa4)a,4EG and A:(A) = 

ifa=p 
ifan/3=# 
if #(a n /?) = 1 and B,(a) = Sj@) for some 
i, j = 1, 2, 

and 

i 

a 

d,, = Ai:, 
(-1)‘n 

ifaE Gand/3E G 
ifaEZandpEZ 

if a = B,@) or /3 = 8,(a) for some i = 1, 2. 

THEOREM 1. 

H,(G) = f log det A&) 

H:(G) = H,(G) - 4 log det AZ(l) + (#Z/2) log d. 
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From this theorem, it follows that det A&) and det A g(A) are 
independent of the orientation 0 on G and det A&) > 1 because of the 
nonegativity of the entropy. Denote 

P&k) = det A&) 

and call it the information polynomial of G. 

ProoJ Let #G= n and #C=m. Let xI: = (x,;uEz} and zG= {z,; 
a E G} be observed values of random variables X, and Z,, respectively. The 
density functions of X,, Z, and (X,, Z,) are denoted by p(x,), p(z,,) and 
p(xz, zG), respectively. The conditional density of Z, given X, is denoted by 
p(z,lx,). Then we have 

and 

It holds that 

H,(G) = J’j lois pi;tx;;;;) . P(X, 3 zcJ dx, 4 
z 

= log 
il 

P(ZGl4 
P(%) 

. P& 3 zc> dx, dz, 

- I log p(zcJ . PW dz, 

=I,-I,. 

Since 

I *ogp(z,lx,) + P(z,IxJ hi 
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we have 

On the other hand, since zG‘ is normally distributed with mean 0 and 
covariance matrix (l/A)A,, we have 

where 

and 

Therefore, 

BEG 

=+iog&-,+logdetA,---3. 

Thus, 

H,,(G) = flog det A,. 

The other equality can be proved similarly. 
For n > 1, a graph which is isomorphic to 

B,, = 111,2 I, {2,3 I,..., in, n + 11 I 

is called an n-line. For n > 3, a graph which is isomorphic to 

c, = 111921, (233 I,..., {n - 1, n), In, 1) 1 

is called an n-cycle. For graphs G and K, the direct sum G 0 K is defined as 
a graph H = H, U H, such that Z(H,) n Z(H,) = 0, H, is isomorphic to G 
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and H, is isomorphic to H. The above K is determined uniquely up to 
isomorphism. Let B(n, k) be the class of graphs which are isomorphic to 
Bn,OBn@ *.a 0 Bnk for some n,, n, ,..., nk with n, + n, + ..+ + nk = n. Let 
C(n) be the class of graphs which are isomorphic to C,, 0 Cnz @ ... @ Cnk 
for some k and n,, n,,..., nk with n, + n2 + ... + nk = n. 

THEOREM 2. For any positive integers n, m, k and h with n + m = k + h 
andin-ml<lk-h\,itholdsthat 

HP,) + W,) > HP,) + HP,), 

and 

H,(B,) + H,(B,) > H,I(B,J + H,(B,) 

for any I > 0. 

COROLLARY. The following three conditions on a graph G E B(n, k) are 
equivalent: 

(1) H(G) = max(H(K); K E B(n, k)}, 

(2) H,(G) = max{H,(K); K E B(n, k)} for any A > 0, and 

(3) G is isomorphic to 

where d = [n/k] and r = k(d + 1) - n. 

Proof: For any positive integers n and m with n < m, we have 

>H(Y,m+ l,m+2l I Gm> = H(B,+ 1) - WBnJ 

One-half of the theorem follows from this fact. The other half follows from 
the following Lemma 4. 

We denote b, = PB,(A) (n = 1, 2 ,...) and c, = PC,(A) (n = 1, 2 ,... ). Then 
b, > 1 (n = 1, 2 ,...) and c, > 1 (n = 3,4 ,...) for any A > 0. We also define 
b,= 1, b-,=0, b-,=-Z2, c2= 1 +4A, c,= 1 and c,=O. 
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LEMMA 1. It holds that 

b, = 

1+21 4 
--A 1+ 21 4 

-A 

0 

(size n) 

and 

c, = 

0 
I 

-/I 
-1 1 t 21 

1+21 4 4 
4 1+ 21 --A 0 

--A 
0 -1 

74 -1 1 + 2A 

(size n) 

(n> 1) 

(n > 3). 

361 

Proof: Clear from the definitions. 

LEMMA 2. (1) For any n>O, we have 

c, = 6, - A’b,_, - 21”. 

(2) For any n, m > -1, we have 

b ,,+,,,=b,,b,,,-lZ2bn_,b,p,. 

ProoJ Clear from Lemma 1 and the definitions of b, (n = 0, -1, -2) 
and c, (n = 2, 1, 0). 

LEMMA 3. For any n, m, k, ha-1 such that n-k=h-m=p>-1, 
we have 

b,b,-bkbh=~*bp~,(bkb,~,-bk~,b,). 

Prooj By Lemma 2, we have 

b,=bkbp-LZbkp,bpp,, 
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and 

Putting them into the left-hand side of our equation, we have the right-hand 
side. 

LEMMA 4. For any n, m, k, h 2-1 such that n + m = k+ h and 
k < min{n, m} + 1, we have 

b,b, - b,b, =A2kt2bn-k-,b,-k-,. 

Thus, ifk < min{n, m), then b,b, > b,b, for any 1 > 0. 

Proof: Applying Lemmas 2 and 3, we have 

b,b,-bkbh=A2b,-k-,(bkb,,-,-bk-,b,) 

=124b,-k-l(bk-,bm-2-bk-2bm-,) 

= . . . 

= ~2kb,ek-l(b,bm-k - bob,,,-,, ,> 

= A2kb n-k-,(b,b,-k--m-k+,) 
= h2kt2b b n-k-l m-k-l’ 

THEOREM 3. For any n, m > 3 and I > 0, 

Hn(C,+,) > H,l(C,) + ff,l(C,). 

Proof Our theorem follows from the following Lemma 10. 

COROLLARY. For GE C(n), 

H,(G) = max(H,(K); K E C(n)} 

for any A > 0 if and only if G is isomorphic to C,. 

LEMMA 5. For 1 ,< n < m, we have 

c ntm - c,c, = 2/I?, + 2I&“c, -A2nCm-n - 41”+“. 

Proof: By Lemma 2, we have 

C ntm - cncnl 
=b ,,+,,, -A2b,im--2 - 211nt” - (b, - A%-,)(b, -J’b,-,> 

+ 219, + 213%, 

= - 2,12b,-,b,-, + A2b,b,_, + A2b,-,b, - 21”+” + 2L”c, + 21’9,. 
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Since by Lemma 4, 

-L,b,-, + b,b,,-, = AZ”b,-,_z 

and 

-L,bm-, + b,-,b, = -A2”-2b,-,, 

we have 

c ntm - C,C, 

= 2~“c, + 2A”c, - A2n(b,,pn - A’b,-,_,) - 2A”+” 

= 21”c, + 2L”c, -PC,_, -4/I”+“. 

BY b,,, and c,,k, we denote the coeffkients of Ik in b, and c,, respec- 
tively. We denote b, % b, if b,,, < b,., for any integer k. 

LEMMA 6. For any n > -2, we have b,,, = n + 1, andfor any n > 0, we 
have c,,, = 0. 

Proof By definition, b-,*_, = -1 and b- ,, _, = 0. Let n > 0. Assume 
that b,., = k + 1 for any -2 < k ,< n - 1. Since by Lemma 2, 

b,=b,b,-, -A2b,b,-, 

= (1 + 21) b,p, -A2b,_,, 

we have 

b,,, = W-,+, -h-2,,-, 
=2n-(n- l)=n+ 1. 

Hence by Lemma 2, we have 

C n,n = b n,n -b n-2.n-2 -2 

=(n+ 1)-(n- l)-2=0 

for any n > 0. 

LEMMA 7. For -1 <n <m andp> 1, we have 

0 4 Ap(b, - Ampnb,) < bm+p -Am-nb,+p. 

Proof It is sufficient to prove that 

0 @ W,+ , -Ab,)< b,+z -lb,+, 
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for any n > -1. We prove this by the induction on n. For n = - 1, this is 
clear. Assume that n > 0 and this is true up to n - 1. Then, we have 
b ,,+,$O and b,+,-ib,*O. Since 

b n+z=(l+Wb,+rJ*b,, 

we have 

b n+2-~b,+1=~(b,+l-~b,)+b,+,~~(b,+I-~b,)~00, 

which completes the proof. 

LEMMA 8. For any n > 1, we have c, + 0. 

Proof Since 

c, = b, - tl*b,-, - 2L”, 

b,-A*b,-,sO, 

and 
c n,n = 0, 

we have c, + 0. 

LEMMA 9. For any n >, -1, we have 

b n,n-,=+,n3+jn2+;n, 

and for any n > 1, we have c,,,_, = n2. 

Proof. Since b,,, = n + 1 and 

b,=(l +2A)b,p,-A*b,m, 

for any n > -1, we have 

b n,n-I = n + 2b,-,,,-, - bnp2,np3 

for any n > 0. Therefore, 

b n,n- I =+n3++n2+fn 

holds by the induction on n. Since c, = b, - A2b,_, , we have 

c n,n-1 = b n,n-I - b,-,,,p, 

=~n3+tn2++n-&(n-1)3-+(n-1)2-f(n-1) 
2 =n. 
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LEMMA 10. For any n, m 2 1, we have c,+, >> c,c, and c,+, # c,c,. 

ProoJ We may assume n < m. By Lemmas 5 and 8, we have 

c n+m - c,c, % An@, -AnC,-,) -4/l”+“. 

Since the (n + m)th term in c,+ m - c,c, is 0 by Lemma 6, c,+ ,,, - c,c, P 0 
fo!lows from c, - A*c,-, P 0. On the other hand, by Lemmas 2 and 7, 

c, - A”c, -n = (6, -Anb*-J - n2(b,-2 - l”b,-,-*) * 0. 

The last statement follows from the fact that by Lemma 9, 
c n+m,n+mP, = (n + m)’ > 0, while the (n + m - 1)th coefficient in c,c, is 0 
by Lemma 6. 

3. PROBLEM II 

For random variables X, Y and Z, we denote by P,,, and Px,z the 
conditional distributions of X given Y and Z, respectively. Suppose that Z is 
a function of Y. Then it holds that 

where the equality holds if and only if 

dPx,y dPx,z -=- 

dP, dP, 

holds almost surely with respect to Px,y. That is to say that 
I(.%‘, Y) = 1(X, Z) if and only if PxlY is a function of Z, or equivalently, X 
and Y are conditionally independent of each other given Z. 

For a graph G, u E z(G) and a E G, we call that a is neutral in the 
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combinatorial or Gaussian sense for (T in G if X0 and Y, or X, and Z, are 
conditionally independent of each other given YGIa, or Z,,,,, for any 1 > 0, 
respectively. 

LEMMA 11. Let 

G, = {a E G; a is not neutral in the combinatorial sense for o in G} and 

G, = {a E G; a is not neutral in the Gaussian sense for o in G}. 

Then, G, and G, are the minimum suflcient subgraphs of G at o in the 
combinatorial and Gaussian sense, respectively. 

Proof: For any a 6$ G,, since 

P X,IYG=pxolYG\,a,' 

P x,,yG does not depend on Y,. Hence, PXwly, is a function of YG,. Thus, 
H”(G,) = H”(G) by the above argument. To prove that G, is minimum, let 
K be a subgraph of G such that H”(K) = Z-Z”(G). Take any a & K. Then 
since 

H”(K) < H”(G\{a I) < H”(G), 

we have H”(G\{a}) = H”(G). H ence, by the above argument, X, and Y, are 
conditionally independent of each other given Y,,,,, . Thus, G, c K. The 
other half of the lemma can be proved similarly. 

For C,, ,.C, c & define a graph Q(E, , C,) by 

THEOREM 4. Let G be a graph, u E C(G) and a E G. Then, a is neutral 
for o in G in the combinatorial sense if there exist Z,, Z,, C, c C(G) such 
that 

(1) Z’,UC,UC3=C(G) and ZinZj=o(i#j), 

(2) aEE,, 

(3) aczj, 

(4) Gn QFl:1, z,) = 4, 

(5) Q<& 9 z,) = G- 

Proof: Denote H = Q(E2, 2,), K = Q(Lc,, z,) and L = G\(H U K). At 
first, we show that our theorem follows from the fact that Xx., vzz and YK are 
conditionally independent of each other given Y,. Assume this fact. Since YL 
and (X,, Y,) are functions of Xr, “r2, we have 

P -P Yl. I YH - YI. I YH UK 
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and 

Therefore, 

P XW.YI.IYH = px,, YI. I Y”uK * 

P 
P X,,YLIYH 

XVI YHVI. 
=-- 

P YL I yF/ 
P XmYLIYHUK = 

P =px~lYHuxu.’ 
YL I YH UK 

Since 
HULcG\(a}cGcHUKUL, 

this implies that 

P X,IG\[al = ‘X,,G, 

and hence, a is neutral for u in G. Since 

to prove that X,,,rz and Y, are conditionally independent of each other 
given YH, it is sufficient to prove that Xr, and Y, are conditionally 
independent of each other given YH. We call xX2 = (x,; r E Z,} E IRE2 
consistent if x, # xI for any r, r E .Zc, with t # <. A relation A on a set Z (i.e., 
/i c .E x Z) is called an order on /i if 

(1) (r,r)6$/1 for any rE& and 
(2) (t, <) E n and (<, q) E ii imply (r, q) E /1 for any r, r, rl E Z. 

In this case, (t, <) E /1 is also denoted as r < ([A]. Let xzz be consistent. 
Then, it defines an order on 2, denoted by [xX2] by t i <[xzz] if x, <xc. In 
general, for a graph E on Z and an orientation v/ on E, we call 
y, = { ys ; [ E E} E (-1, 1 }” consistent if there exists an order on Z which 
contains the relation 

! 
(7, t) E Z x z; lr, 8 E E, r = Vi({r, 0) andY,T,s, = C--l)‘+’ 

forsomei= 1,2 1. 

If yE is consistent, then the minimum order as above is denoted by [ yE]. Let 
orientations on H and K be given. Let y, be consistent. We call y, consistent 
with respect to yH if y,, = (yH, yK) is consistent. We call xx2 consistent 
with respect to y, if xzz is consistent and if r < r[ yH] implies < < r[xz2] for 
any <, r E C,. It is clear that 

P(YH is consistent, XX, and Y, are consistent with respect to Y,,) = 1. 
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Therefore, to prove that Xr, and YK are conditionally independent of each 
other given YH, it is sufficient to prove that 

P(Y, =Yx&= XZ*’ YH=YH)=P(YK=YKJYw=YH) 

for any consistent y,, consistent xz, and yx with respect to y,. Let such y,, 
xx, and yK be given. For r E C, , define 

m(t)=max{xl;rE~,,rir\YHI) 
and 

For t, C$ E C,, we denote 

if neither r < < [ yHj nor t-r; r [ yHJ. Then, it defines an equivalence relation 
on C,. Let 8,) .302 ,..., 8, be the equivalence classes of the relation arranged 
sothatr<<[y,]foranyrEZiand{E Ej with i < j. Then, it is easy to see 
that m(r) = n(r) and M(t) = M(c) hold if T N 4 [ yN]. We denote rrti = m(r) 
and Mi = M(t) for any r E Si and i = 1,2 ,..., n. It is also easy to see that 
mi < Mi < m,, 2 < Mi+ 1 holds for any i = 1, 2 ,..., n - 1. Then, we have 

= fi P( Y~i = y,i( mi < X, < Mi for any t E s:“i) 
i=l 

where Ki = Q(Zi, ZJ. S ince the last term depends only on y,, we complete 
the proof. 

THEOREM 5. For a graph G, o E C(G) and a E G, a is eeutraifor u in 
G in the Gaussian sense &fund only if 

det(d4y)BEG,yo(G\la))Ulol = 07 

where dB,, are as in the paragraph preceding Theorem 1 with 8 = 10). 

ProoJ Since (X,, 2,) is normally distributed with 
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there exists a linear function T of zc such that 

p(x,lz,) = (27cv)- l/2 e-(1/20)(x”-T(r(;))2. 

Therefore, to prove our theorem, it is sufftcient to prove that T(zG) does not 
depend on z,. On the other hand, since 

P(X, I4 = 
P(%, 4 

p(zG) 

we have 

xi - 2x,T(z,) = &IA;@)-‘[ x,, zG ] + (a term depending only on zc). 
Therefore, the term -2x,T(z,) comes from the first term in the right-hand 
side. Hence, to prove that T(z,) is independent of z,, it is sufftcient to prove 
that (a, o) factor of A;(A)-’ is 0. This is equivalent to say that (a, a) 
cofactor of A:(A) is 0, which completes the proof. 

COROLLARY. A suflcient condition for a E G to be neutral for u E C(G) 
in G is that there exists B c C(G) such that 

(1) a c 2, and 

(2) for any s, < E Z, there exists an automorphism of G U Q(Z, 5) 

which transforms o to itself, t to Lj and c to r. 

Proof: Let G’ = G U Q(E, Z). Take an arbitrary [ = (5, {} E Q(Z, Z) 
and an automorphism f of G’ such that f (a) = u, f (5) = < and f(r) = r. For 
P = {P, v) E G’, we denote f Cp) = {f @), f (v) ] E G’. Take an orientation w on 
G’. For p E G’ U (a}, define 

if /?=uorifpE G’and v,(f(p))=f(vlCp)) 
else. 

Then, f is a permutation on G’ U {u}. Let (d,,) be as in the paragraph 
preceding Theorem 1 with G’ and {u} for G and S. Then, it holds that 

forany~,~EG’U{u}.Letk=#{~EG’;g~)=-l}.Notethatg(~)=-l. 
Therefore, if we permutate the rows and the columns of the matrix 
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according to f at the same time, then it changes the sign at k rows and at 
k - 1 columns, succeedingly. This implies that the determinant of the matrix 
changes the sign, while it remains unchanged since the number of the 
transpositions of rows together with columns is even since f(a) = u and 
f(c) = [. Thus, the determinant is 0, which implies that 1; is neutral for u in 
G’ by Theorem 5. Since [E Q(E, E) was arbitrary, we have for any A > 0, 

Hl;(G\Q(S, Z )) = H;(G U Q(E, E)) 

by Lemma 11. Since 

G\Q(E, E ) c G\{ a} c G c G u Q(E, S), 

this implies that for any A > 0, 

ffT(G) = HI;(G\{al), 

and hence a is neutral for CJ in G by Lemma 11. 

4. EXAMPLES 

Take the orientations 8 on B,_, (n > 2) or C, (n > 3) such that 
O,({i, i + 1)) = i for i = 1, 2 ,..., n - 1 and e,({n, 1)) = n. Here is an algorithm 
to calculate H(B,) due to Harriet Fell. For n > 1, y,” E {-1, 1 )Bn and 
0 < k < II, define J,( yB,, k) by the following equation: 

J,(l,O)=J,(-1, l)=O 

J,(l, l)=Jr(-LO)= 1 

(Y,n,n+ll = 1) 

(Y,n,n+l, = -1). 
THEOREM 6 (HARRIET FELL). 

H(B,) = log@ + l)! - 

ProoJ For y,” E { -1, 1 }Bn, let [yB,] be the order on (1, 2,..., n + 1) 
defined in the proof of Theorem 4. Then, it can be proved by the induction 
on n that J,,(y,“, k) is the number of total orders which are extensions of 
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[ yB,] such that the number of elements in { 1,2,..., n} which is smaller than 
n + 1 in the order is k. Hence, 

P( YB, = YB,) = 1 n 
(n + l)! k;. Jn(Yenq k). 

Our theorem follows from this fact together with the fact that 

WJ = - s WB, = YB,) WY,” = YR,)’ YE” 
There is a similar algorithm to calculate H(C,) due to Mitsuru Fukui. For 

anyy,“E (-1, 1}cn(n>3)andj=0, l,..., IZ- l,definerjycnE (-1, l}Cnby 

C7jYC,)(i,i+l) =Y[i+j.i+j+ II 

for any i = 1, 2,..., IZ, where the additions involving i or j are considered in 
module n. Define qycn E (- 1, I} ‘, m1 (I? > 4) by 

(VYYc,)fi,i+l, =Y[i,i+lI (i = 1, 2,..., n - 2) 

and 

(VYyc,),n-,.I) = -1. 

For n > 3, yc,E {-1, I}“’ and 1 ,< k ,< n - 1, define J,,( yc-, k) by the 
following equation: 

J,(yc3, k) = I 
if.v,,,2, = L.v,3,1, = -1 and (yrlq3, + 3)/2 = k 

0 else 

J,h+ k) = 

0 else. 

THEOREM 7 (MITSURU FUKUI). 

H(C,)=logn!-$1 
n--l n-l 

1 2 Jn(rjYYc,yk) 
YC” j=O k=l 

n-l n-l 

j=O k=l 
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EXAMPLE 1 (MITSURU FUKUI). 

H(B ,) + 1 .oooo 
H(B,) + 1.9183 
H(B,) + 2.8250 H(C,) + 2.5850 
H(B,) + 3.7298 H(C,) + 3.5849 
H(B,) + 4.6344 H(C,) + 4.5 106 
H(B,) + 5.5388 H(C,) + 5.4222 

H(C,) + 6.3295 
H(C,) + 7.235 1 
H(C,) + 8.1400 

(in the binary base) 

EXAMPLE 2. 

b,=1+2L 
b, = 1 + 4L + 31’ c3 = 1 + 61+ 9A2 
b, = 1 + 6A + lOA + 4A3 ~,=1+81+2OA~+16A,~ 
b, = 1 + 8L + 21k* + 20A3 + 5A4 c, = 1 + loti + 35A* + 50k3 + 25A4 
b, = 1 + 1OA + 36L* + 56k3 + 35A4 + 6L5 
b, = 1 + 121E + 551* + 120A3 + 126k4 + 56A5 + 7A6 

EXAMPLE 3. It holds that 

H(B, @ C,) = H(B,) + H(C,) + 5.4100 < 5.4222 + H(C,), 

while 

H,(B, @ C,) = log b,c, = log(1 + 12A + 55L2 + 1 18A3 + 1 14A4 + 36A’) 
>log(l + 121+ 54A* + 1 12A3 + 105A4 + 36A’) = log c, = H,(C,) 

for any I > 0. 

EXAMPLE 4. By the corollary to Theorem 5, ( 1,5} is neutral for 3 in C,, 
while it is not in the combinatorial sense. since 

w,5,,, = 1 IX, =x, Y (1.2) = y(3,41 = y,4.5) = ‘7 ‘,,,,I = -1) 

tends to 0 as x-+ co and tends to l/6 as x--, -co. 
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5. UNSOLVED PROBLEMS 
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Problem 1. Does 

ff(C,+,) > WC,) + WC,) 

hold for any n, m > 3? 

Probfem 2. Are the converses of Theorem 4 and the corollary to 
Theorem 5 true? 

Problem 3. Does the combinatorial entropy determine the isomorphic 
class of graphs? 
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