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Abstract. The pattern complexity of a word for a given pattern S, where S is a finite
subset of {0, 1, 2, . . .}, is the number of distinct restrictions of the word to S + n (with
n = 0, 1, 2, . . .). The maximal pattern complexity of the word, introduced in the paper
of T. Kamae and L. Zamboni [Sequence entropy and the maximal pattern complexity
of infinite words. Ergod. Th. & Dynam. Sys. 22(4) (2002), 1191–1199], is the
maximum value of the pattern complexity of S with #S = k as a function of k = 1, 2, . . . .
A substitution of constant length on an alphabet is a mapping from the alphabet to finite
words on it of constant length not less than two. An infinite word is called a fixed point of
the substitution if it stays the same after the substitution is applied. In this paper, we prove
that the maximal pattern complexity of a fixed point of a substitution of constant length on
{0, 1} (as a function of k = 1, 2, . . .) is either bounded, a linear function of k, or 2k .

1. Introduction
Let6 be a finite alphabet, and let x = x0x1 · · · ∈6

N be an infinite word on6 with indices
in N := {0, 1, 2, . . .}.

A (k-)window T = {t0 < t1 < · · ·< tk−1} is a subset of N. A word u is said to be a
T -factor or T -subword of a word v = v0v1 · · · if u = vi+t0vi+t1 · · · vi+tk for some i . A
word u is called simply a factor or subword of a word v = v0v1 · · · if u = vivi+1 · · · vi+n

for some i and n. In both cases, we say that the subword (or T -subword) u occurs in v at
the position i . A subword occurring in a word at the position 0 is called a prefix of that
word. An infinite word is said to be recurrent if each of its subwords occurs in it at least
twice. The length of the word u = u0u1 · · · un−1 is n and is denoted by |u|.

Let us denote the set of T -factors (respectively, factors) of a word x by Px (T )
(respectively, Fx ) and the set of all finite words on 6 by 6∗. A classical complexity
measure for an infinite (or finite) word x on 6 is the subword complexity, that is, the
function fx (n)= |Fx ∩6

n
|. A survey on subword complexity can be found in [5].

We consider another complexity measure, namely the function p∗x (n)= sup|T |=n
|Px (T )| introduced in [10].
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A substitution ϕ :6∗→6∗ is a mapping that obeys the identity ϕ(xy)= ϕ(x)ϕ(y) for
all words x, y ∈6∗. It is determined by the values ϕ(a) for a ∈6. A substitution is binary
if 6 = {0, 1}. A substitution ϕ :6∗→6∗ is expanding if for each a ∈6 the inequality
|ϕ(a)|> 1 holds.

Any expanding substitution ϕ :6∗→6∗ generates the mapping 6N
→6N that maps

an infinite word x = x0x1 · · · to the word ϕ(x0)ϕ(x1) · · · . We denote this mapping by the
same letter ϕ for convenience. When ϕ(a) begins with a for some a ∈6, this mapping has
a fixed point, i.e. an infinite word that satisfies x = ϕ(x); it is exactly the word obtained as
the limit limn→∞ ϕ

n(a)= ϕω(a).
A substitution is said to be of constant length if the images of all letters are of the same

length which is not less than two. Hence, such a substitution is expanding.

Example 1. The Sierpiński (Cantor’s) word s = 0101110101111 · · · is a fixed point of the
substitution ϕ of constant length three, where ϕS on {0, 1} is defined by ϕS(0)= 010 and
ϕS(1)= 111.

Owing to Cobham’s theorem [1], fixed points of substitutions of constant length form a
subclass of automatic words.

In this paper, we show that the maximal pattern complexity of a fixed point of a binary
substitution of constant length can be classified as either bounded, linear or 2n as a function
of n = 1, 2, . . . . We also give an easy criterion to distinguish the different cases.

2. Preliminaries
Let u be a finite word, and let uω denote its infinite concatenation, i.e. the word uuu · · · .
We say that an infinite word is periodic if it is of the form puω for some finite words p
and u; an infinite word is non-periodic if it is not periodic. Note that a non-periodic fixed
point of a binary substitution is recurrent.

The following is a known fact from [10].

LEMMA 1. The maximal pattern complexity of a periodic word is bounded.

Let us denote by u the infinite word obtained by exchanging zeros and ones in a word u
on the binary alphabet. A substitution ϕ : {0, 1}∗→ {0, 1}∗ of constant length is said to be
symmetric if ϕ(0)= ϕ(1).

The arithmetical complexity ax (n) of an infinite word x is the number of distinct words
of the form xk xk+d · · · xk+(n−1)d for arbitrary initial positions k ≥ 0 and differences d ≥ 1
(see [3]). We say that a binary infinite word is arithmetically universal (respectively,
pattern universal) if its arithmetical complexity (respectively, maximal pattern complexity)
is 2n .

The next theorem was proved in [6].

THEOREM 1. Non-periodic fixed points of symmetric binary substitutions are arithmeti-
cally universal.

A direct consequence of this theorem is the following lemma.

LEMMA 2. Non-periodic fixed points of symmetric binary substitutions are pattern
universal.
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Proof. Let x be such a fixed point. Consider a sequence of words {u(n)}n=1,2,... such that
fu(n)(n)= 2n for each n. Since x is arithmetically universal, u(n) = xkn xkn+dn · · · xkn+lndn

for some kn, dn and ln . For each n and the pattern T n
= {0, dn, 2dn, . . . , (n − 1)dn}, we

have px (T n)= 2n . Therefore, p∗x (n)≡ 2n . 2

Example 2. The Thue–Morse word xTM = 01101001100101 · · · is a fixed point of the
binary symmetric substitution ϕTM defined by ϕTM(0)= 01 and ϕTM(1)= 10. By
Lemma 2, it is pattern universal.

Let x and y = y0 y1 · · · be infinite words on 6 ∪ {?}. Let us denote by x G y the result
of replacing the i th occurrence of ? in x by yi . Classical Toeplitz words [8] are words of
the form ξω G ξω G ξω G · · · where ξ is a finite word on 6 ∪ {?} not starting with ‘?’.

Subword and arithmetical complexities of Toeplitz words were studied in [2, 4]. The
following statement is a simplified version of the theorem proved in [7].

THEOREM 2. If a finite word ξ = ξ0ξ1 · · · ξr−1 on 6 ∪ {?} with r ≥ 2 and ξ0 6= ? contains
exactly one ?, then there exists c ≥ 0 such that

lim
k→∞

p∗x (n)

n
= c

for a Toeplitz word x = ξω G ξω G · · · . Moreover, c is such that

c = #6 + max
L⊂{0,1,...,r−1}

`≥2

E(ξ, L)

`− 1
(1)

with `= #L and

E(ξ, L)= #(π6Pξω (L) ∪ {a
`
: a ∈6})− `#6,

where for a set S ⊂ (6 ∪ {?})∗, π6S is the subset of 6∗ containing all elements obtained
from some element in S by replacing each occurrence of the letter ? by an arbitrary letter
in 6.

Example 3. Let ξ = 01? and x = ξω G ξω G · · · . Let L = {0, 1, 2}. Then

Pξω (L)= {01?, 1?0, ?01} and π{0,1}Pξω (L)= {010, 011, 100, 110, 001, 101}.

Hence, π{0,1}Pξω (L) ∪ {000, 111} = {0, 1}3 and E(ξ, L)= #{0, 1}3 − 3× 2= 2. There-
fore, #{0, 1} + E(ξ, L)/(`− 1)= 3. Moreover, if #L = 2, then E(ξ, L)≤ #{0, 1}2 − 2×
2= 0. Thus, c = 3 in (1) and limn→∞ p∗x (n)/n = 3. This x is also a fixed point of the
substitution 0 7→ 010, 1 7→ 011.

Example 4. Let ξ = 010? and x = ξω G ξω G · · · . Let L = {0, 1, 2, 3}. Then

Pξω (L)= {010?, 10?0, 0?01, ?010}

and
π{0,1}Pξω (L)= {0100, 0101, 1000, 1010, 0001, 0010}.

Hence, #(π{0,1}Pξω (L) ∪ {0000, 1111})= 8 and E(ξ, L)= 8− 4× 2= 0. Let L =
{0, 1, 2}. Then

Pξω (L)= {010, 10?, 0?0, ?01} and π{0,1}Pξω (L)= {010, 100, 101, 000, 001}.

Hence, #(π{0,1}Pξω (L) ∪ {000, 111})= 6 and E(ξ, {0, 1, 2})= 6− 3× 2= 0. By
symmetry, E(ξ, L)= 0 for any L with #L = 3. Moreover, E(ξ, L)≤ 0 for any L
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with #L = 2 by the same reasoning as in Example 3. Thus, c = 2 in (1) and
limn→∞ p∗x (n)/n = 2. This x is also a fixed point of the substitution 0 7→ 0100, 1 7→ 0101.

A result that we shall also need is the next theorem, which is proved in [9].

THEOREM 3. Either an infinite binary word is pattern universal or its maximal pattern
complexity is bounded by some polynomial.

The Hamming distance dH (u, v) between two words u and v of the same length is the
number of positions at which they differ from each other. Let us denote the number of
occurrences of a symbol a in a word u by |u|a .

3. Fixed points
In this section, we prove some links between the fixed points of binary substitutions of
constant length and their languages. First of all, we prove that some of these fixed points
are Toeplitz words as well.

LEMMA 3. Let ϕ be a binary substitution of constant length such that ϕ(0)= pas and
ϕ(1)= pas, where s is a word, p is a non-empty word and a is a symbol. Suppose that the
infinite word x is a fixed point of ϕ. Then x is a Toeplitz word ξω G ξω G · · · with ξ = p?s
or ξ = ϕ(p)p?sϕ(s).

Deep results on this topic can be found in [4].

Proof. In the case where a = p0, let ξ = p?s.
In the case where a 6= p0, let us consider the substitution ϕ2. It can easily be seen

that ϕ2 satisfies the condition of the previous case and that x is its fixed point. 2

Let us consider two binary substitutions ϕ and ψ of constant length, defined by

ϕ(0) = ps(0), ϕ(1)= ps(1),
ψ(0) = s(0) p, ψ(1)= s(1) p,

(2)

where p, s(0) and s(1) are some finite words. Such substitutions are said to be conjugate to
each other.

CLAIM 1. If the substitutions ϕ and ψ are conjugate to each other, then so are the
substitutions ϕ2 and ψ2.

Proof. Assume that (2) holds. Let us define

p′ = ϕ(p)p = pψ(p),

t (0) = s(s
(0)
0 ) ps(s

(0)
1 )
· · · ps

(s(0)
|s(0)|−1

)
,

t (1) = s(s
(1)
0 ) ps(s

(1)
1 )
· · · ps

(s(1)
|s(1)|−1

)
.

Then we have the conjugacy between ϕ2 and ψ2 as follows:

ϕ2(0)= p′t (0), ϕ2(1)= p′t (1),

ψ2(0)= t (0) p′, ψ2(1)= t (1) p′. 2

The following statements show the relation between fixed points of conjugate
substitutions.
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CLAIM 2. Let the substitutions ϕ and ψ be of the form (2), let u and v be words, and let a
be a letter. Then

ua ∈ Fv implies ψ(u) ∈ Fϕ(v);

au ∈ Fv implies ϕ(u) ∈ Fψ(v).

Proof. We have

ϕ(ua)= ps(u0) ps(u1) · · · ps(un) ps(a) = pψ(u)s(a);

ψ(au)= s(a) ps(u0) ps(u1) · · · ps(un) p = s(a)ϕ(u)p.

So the statement is proved. 2

CLAIM 3. In Claim 2, if v is a non-constant infinite word which is a fixed point of ϕ, then
for any fixed point u of ψ we have Fu ⊂ Fv . Moreover, if in the above u is non-constant
and recurrent, then Fu = Fv .

Proof. Let u be a fixed point of ψ . Since u0 ∈ Fv , there exists a ∈ {0, 1} such that
u0a ∈ Fv . Therefore, by Claim 2, ψ(u0) ∈ Fϕ(v) = Fv . In the same way, we can prove
that ψn(u0) ∈ Fv for any n = 1, 2, . . . . This implies Fu ⊂ Fv .

If u is non-constant and recurrent, then av0 ∈ Fu for some a ∈ {0, 1}. Therefore
ϕ(v0) ∈ Fu , and by the same argument as above we obtain Fv ⊂ Fu . 2

Let us define the direct product of two infinite words (or words of the same length)
x = x0x1 · · · and y = y0 y1 · · · on {0, 1} to be the word x ⊗ y = 〈x0, y0〉〈x1, y1〉 · · · on
the alphabet {0, 1} × {0, 1}. Let δ be the mapping {0, 1} × {0, 1} → {0, 1} defined by
δ(i, j)= 1 if i = j and δ(i, j)= 0 if i 6= j . By applying δ coordinatewise, we can define
the mapping ({0, 1} × {0, 1})N→ {0, 1}N, which we also denote by δ.

LEMMA 4. Let the infinite words x and y be fixed points of a binary substitution ϕ of
constant length m ≥ 2. Then the word δ(x ⊗ y) is a fixed point of the substitution ψ of
constant length m defined by

ψ(0) = δ(ϕ(0)⊗ ϕ(1)),
ψ(1) = 1m .

(3)

Proof. If x0 = y0, then we have x = y and δ(x ⊗ y)= 1ω, which is a fixed point of ψ .
Now suppose x0 6= y0. We may assume that x0 = 0 and y0 = 1. Since x and y are fixed
points of ϕ, the relations ϕ(0)0 = 0 and ϕ(1)0 = 1 hold. Hence we have ψ(0)0 = 0.

Since (3) implies that ψδ = δ(ϕ ⊗ ϕ), we have

δ(x ⊗ y)= lim
n→∞

δ(ϕ ⊗ ϕ)n(0⊗ 1)= lim
n→∞

ψnδ(0⊗ 1)= lim
n→∞

ψn(0).

Hence δ(x ⊗ y) is a fixed point of ψ . 2

4. The main result
Let us prove pattern universality for a specific case.

LEMMA 5. A non-constant fixed point of a binary substitution ψ of constant length m
defined by ψ(1)= 1m and ψ(0)= 0u0s for some words u and s is pattern universal.

Proof. Let x = ψω(0) be such a point. We shall construct by induction a series of windows
T n such that Fx (T n)⊃ 06n−1.
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Suppose that we already have such an n-window T n . Then there exists a finite word
p = ψc(0) with the property that Fp(T n)= Fx (T n). Let us prove that Fx (T n+1)⊃ 06n

for T n+1
= T n

∪ {tn}, where tn = |pψc(u)|.
Consider the word p′ = ψ(p)= pψc(u)pψc(s) ∈ Fx . For each k < |p| we have p′k =

p′k+tn
. Therefore, 06n−10⊂ Fx (T n+1).

That the infinite word x is non-constant means that x contains the symbol 1 and,
consequently, an arbitrarily large word 11 · · · 1. So, a sufficiently large word of the form
xk xk+d · · · xk+ld contains 1 for each d . Let us choose d = |u| + 1 and k such that xk = 0
and xk+d = 1.

Consider the word p′ = ψc(xk xk+1 · · · xk+d)= pψc(v)1|p| ∈ Fx , where |v| = |u|. For
each k < |p| we have p′k+tn

= 1. Therefore, 06n−11⊂ Fx (T n+1).

We have proved p∗x (n)≥ 2n−1. By Theorem 3 this means that x is pattern universal. 2

Consider the specific case of a substitution having two ‘very’ different fixed points.

LEMMA 6. A non-periodic fixed point of a binary substitution ϕ of constant length defined
by ϕ(0)= 0uas and ϕ(1)= 1uas′ for some words u, s, s′ and a symbol a is pattern
universal.

Proof. Let us consider the fixed points x = ϕω(0) and y = ϕω(1) of ϕ. If ϕ(0) does not
contain 1 or ϕ(1) does not contain 0, then we are in the setting of Lemma 5 and thus the
statement is true.

Suppose now that ϕ(0) contains 1 and ϕ(1) contains 0. Note that this implies Fx = Fy

and, consequently, that Px (T )= Py(T ) for each window T .
In the case of the symmetric substitution ϕ, both x and y are pattern universal owing to

Lemma 2.
Assume that ϕ is not symmetric. Let δ be the mapping defined in the paragraph above

Lemma 4, and let the substitution ψ be defined by (3) with the ϕ of the current lemma.
Consider the word z = δ(x ⊗ y) that is the fixed point of ψ by Lemma 4. From our
assumption and the definitions, it follows that z is a non-constant word. One can make
sure that ψ also satisfies the conditions of Lemma 5, so that p∗z (n)≡ 2n .

For each window T we have the inclusion

Pz(T )⊆ {δ(u ⊗ v) : u, v ∈ Px (T )}.

Hence, pz(T )= 2|T | implies px (T )≥ 2|T |/2. Thus p∗x (n)≡ 2n by virtue of Theorem 3. 2

We have considered the cases of a substitution having two distinct fixed points. Now
we are able to prove the main theorem.

THEOREM 4. Suppose that an infinite non-periodic word x is a fixed point of a binary
substitution ϕ of constant length. The following characterization holds for the maximal
pattern complexity of x:

(Case 1) if dH (ϕ(0), ϕ(1)) > 1, then px (n)≡ 2n
;

(Case 2) if dH (ϕ(0), ϕ(1))= 1, then px (n) is linear.

Proof. We first prove Case 1.

Case 1a. Let ϕ(0)0 = 0 and ϕ(1)0 = 1. Then the substitution and the word satisfy the
conditions of Lemma 6, and so the statement is true.
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Case 1b. Let the words ϕ(0) and ϕ(1) have a common prefix. Consider a conjugate
substitution ϕ′ of ϕ such that ϕ′(0)0 6= ϕ′(1)0.

By the choice of ϕ′ and the fact that dH (ϕ
′(0), ϕ′(1))= dH (ϕ(0), ϕ(1)) > 1, the

substitution ϕ′
2 is of the form ϕ′

2
(0)= 0uas and ϕ′

2
(1)= 1uas′; so it satisfies the

conditions of Lemma 6 and has two fixed points.
Suppose that both of these fixed points are constant words. This would imply that

ϕ′(0)= aa · · · a and ϕ′(1)= bb · · · b for some a, b ∈62, and, owing to the conjugacy,
the same must hold for ϕ. In this case, we would have a contradiction with the non-
periodicity of x . So, let the word x ′ = (ϕ′2)ω(a) be non-constant for some a ∈62.

Suppose that x ′ is not recurrent. This would imply that ϕ′2(a)= aa · · · a and
ϕ′

2
(a)= aa · · · a. Then we have the same statement for ϕ′ and, since dH (ϕ(0), ϕ(1))=

dH (ϕ
′(0), ϕ′(1)), it contradicts the condition of Case 1. So x ′ is recurrent and we have

Fx = Fx ′ by Claim 3 applied to the conjugate (by Claim 1) substitutions ϕ′2 and ϕ2.
Hence, x ′ is non-periodic.

Applying Lemma 6 to the word x ′ and the substitution ϕ′2, we obtain px ′ ≡ 2n and,
consequently, px ≡ 2n , which finishes the proof of Case 1.

Now consider Case 2. In this case, we have ϕ(0)= pas and ϕ(1)= pas for some
words p and s. If necessary, by considering ϕ2 in place of ϕ, we may assume that a = 0.
Moreover, since x is non-periodic, ps contains both of the letters 0 and 1.

Case 2a. Let p be a non-empty word. By Lemma 3, the word x is the Toeplitz word
with one hole; hence, by Theorem 2, px (n) is linear [7].

Case 2b. Let ϕ(0)= 0s and ϕ(1)= 1s. Consider the conjugate substitution ϕ′ of ϕ such
that ϕ′(0)= s0 and ϕ′(1)= s1. Obviously, it has a fixed point x ′ that is a Toeplitz word
with one hole with a linear complexity px ′(n) (see [7]). Since s contains both of the letters 0
and 1, x is recurrent. Therefore, we have Fx = Fx ′ by Claim 3. Thus, px (n)= px ′(n) is
linear. 2
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