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Abstract

Let 1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1, · · · be the {−1, 1}-valued Thue-
Morse sequence. The correlation dimension of it is D2 satisfying that

K−1∑
k=0

|γ(k)|2 � K1−D2

in the sense that the ratio between the left and right sides is bounded
away from 0 and ∞ as K → ∞, where γ is the correlation function,
and is known ([6]) to be

D2 = 1− log
1 +

√
17

4
/ log 2 = 0.64298 · · · .

Under its spectral measure µ on [0, 1), consider the transformation T
with Tx = 2x (mod 1). It is shown to be of Kolmogorov type having
the entropy at least D2 log 2. Moreover, T−1 define a random walk on
[0, 1) with the transition probability

P1((1/2)x+ (1/2)j |x) = (1/2)(1− cos(π(x+ j))) (j = 0, 1).

It is proved that this random walk is mixing and µ is the unique sta-
tionary measure. Moreover,

lim
N→∞

∫
PN ((x− ε, x+ ε)|x)dµ(x) � εD2 (as ε → 0),

where PN (· | ·) is the N -step transition probability.
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1 Introduction

Let ω = ω(0)ω(1)ω(2) · · · ∈ {−1, 1}N be the Thue-Morse sequence, that is,
for any n ∈ N := {0, 1, 2, · · · }, ω(n) = (−1)e1(n), where e1(n) is the number
of 1 in the 2-adic representation of n. There have been a lot of studies on
the Thue-Morse sequence from various point of views, e.g. language theory,
ergodic theory, number theory and physics. From the point view of ergodic
theory, it is known to be strictly ergodic (Kakutani [2]), and thesymbolic
dynamics of the shift on {−1, 1}N with respect to the unique shift invari-
ant probability measureon the orbit closure of ω has a partially continuous
spectrum and the entropy 0. Let µ be the power spectrum measure of this
dynamical system with respect to the coordinate function. It known ([3],
for example) to be continuous but singular. This µ is a probability Borel
measure on the torus R/Z, which we identify with [0, 1) (sometimes with
[−1/2, 1/2)). It is known (Theorem 3) that µ has a representation as an
infinite product converging in the weak sense. That is,

dµ(x) =

∞∏
k=0

(1− cos 2π2kx)dx. (1.1)

It is the Fourier transform of the correlation function γ(k) (k ∈ Z) defined
as

γ(k) = lim
N→∞

(1/N)

N−1∑
n=0

ω(n+ k)ω(n),

that is, ∫
e2πikxdµ(x) = γ(k) (k ∈ Z).

It is proved by Mahler [1] that
γ(0) = 1
γ(2k) = γ(k)
γ(2k + 1) = (−1/2)(γ(k) + γ(k + 1))

(k ∈ N) (1.2)

and by Zaks, Pikovsky and Kurths [6] that

K−1∑
k=0

|γ(k)|2 � K1−D2 (as K → ∞) (1.3)

with

D2 = 1− log
1 +

√
17

4
/ log 2 = 0.64298 · · · ,

which is called the correlation dimension (Theorem 1). Note that we use
the notation A(K) � B(K) in the sense that

0 < lim inf
K→∞

A(K)

B(K)
≤ lim sup

K→∞

A(K)

B(K)
< ∞.
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By (1.2), µ is a T -invariant probability measure, where T is the transfor-
mation on [0, 1) such that Tx = 2x (mod 1). It is proved (Theorem 4) that
the dynamical system ([0, 1), µ, T ) is K-system (K for Kolmogrov), that is,
it has the trivial tail field. We don’t know the exact value of the entropy of
the system, but it is at least D2 log 2 (Theorem 2).

By (1.1), the probability under dµ(y) that y = (1/2)x+ (1/2)j (j = 0, 1)
given Ty = x is (1−cosπ(x+j))/2. Hence, we have a random walk on [0, 1)
with the transition probability

P1((1/2)x+ (1/2)j |x) = (1− cosπ(x+ j))/2 (j = 0, 1).

Then, we prove (Theorem 5) that µ is the unique stationary measure of the
random walk and

lim
N→∞

∫
PN ((x− ε, x+ ε)|x)dµ(x) � εD2 (as ε → 0)

holds (Theorem 6), where PN is the N -step transition probability. For a
general reference to the ergodic theory and dynamical systems, we cite [4].

2 Ergodicity of the system

In this section we prove that the dynamical system ([0, 1), µ, T ) is ergodic.
We review the properties of the correlation function γ obtained in [6]. Let

X = X0X1X2 · · · be an i.i.d. process with P (X0 = 0) = P (X0 = 1) = 1/2,
which is also considered as 2-adic integer

∑∞
n=0Xn2

n. For k ∈ N, consider
the addition X + k. Note that by the addition, only finitely many digits of
X changes almost surely. Hence, the increased number of digit 1 in X + k
from X makes sense, which we denote by e1(k,X). Then we have

γ(k) := lim
N→∞

(1/N)
N−1∑
n=0

ω(n+ k)ω(n) = E[(−1)e1(k,X)].

The second equality follows since the space of 2-adic integers is strictly
ergodic with respect to adding 1 and the sets of n in this space such that
(−1)e1(k,n) = ±1 have boundaries of measure 0 with respect to the unique
invariant measure, that is, the distribution of X0X1X2 · · · .

Since e1(2k,X0X1 · · · ) = e1(k,X1X2 · · · ), we have γ(2k) = γ(k). More-
over, since

e1(2k + 1, X0X1 · · · ) =
{

1 + e1(k,X1X2 · · · ) (X0 = 0)
−1 + e1(k + 1, X1X2 · · · ) (X0 = 1)

,

we have γ(2k + 1) = (−1/2)(γ(k) + γ(k + 1)).

3



Definition 1. The spectral measure µ of the Thue-Morse sequence is the
unique Borel measure on [0, 1) such that

∫
e2πikxdµ(x) = γ(k) for any k ∈ N.

It is a probability measure since
∫
dµ(x) = γ(0) = 1. Moreover, γ(−k) =∫

e−2πikxdµ(x) = γ(k) for any k ∈ N, since ω(n) is real for any ω ∈ N.

Lemma 1. The probability measure µ is T -invariant.

Proof For any k ∈ N, we have∫
e2πikTxdµ(x) =

∫
e2πik2xdµ(x) = γ(2k) = γ(k) =

∫
e2πikxdµ(x),

which implies that µ is T -invariant. 2

Lemma 2. For any k, l ∈ Z, we have limn→∞ γ(k + 2nl) = γ(k)γ(l).

Proof We only prove the lemma for k, l ∈ N. Let k < 2n. If there is no
carry to the 2n term in the addition X + k, we have

e1(k + 2nl,X) = e1(k,X) + e1(l,XnXn+1 · · · ).

Let this event be Bn. Then,

E[(−1)e1(k+2nl,X) |Bn] = E[(−1)e1(k,X)(−1)e1(l,XnXn+1··· ) |Bn]

= E[(−1)e1(k,X) |Bn] E[(−1)e1(l,X)].

Since limn→∞ P (Bn) = 1, we have

lim
n→∞

E[(−1)e1(k,X) |Bn] E[(−1)e1(l,X)] = E[(−1)e1(k,X)] E[(−1)e1(l,X)].

Thus, we have limn→∞ γ(k + 2nl) = γ(k)γ(l). 2

Lemma 3. The system ([0, 1), µ, T ) is ergodic.

Proof It is sufficient to prove that for any k ∈ N,

IN :=

∫ ∣∣∣∣∣(1/N)

N−1∑
n=0

e2πi2
nkx − γ(k)

∣∣∣∣∣
2

dµ(x) → 0

as N → ∞. By (1.2) and Definition 1, we have

IN = (1/N2)

N−1∑
n,m=0

∫
e2πi(2

n−2m)kxdµ(x)

− (1/N)γ(k)

N−1∑
n,m=0

∫
(e2πi2

nkx + e−2πi2mkx)dµ(x) + γ(k)2

= (1/N2)
N−1∑
n,m=0

γ(2nk − 2mk)− 2γ(k)2 + γ(k)2.
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Since by Lemma 2,

lim
|n−m|→∞

γ(2nk − 2mk) = γ(k)2,

we have

lim
N→∞

(1/N2)
N−1∑
n,m=0

γ(2nk − 2mk) = γ(k)2,

and hence, limN→∞ IN = 0. 2

3 Correlation dimension and the entropy

Let SN =
∑2N−1

k=0 |γ(k)|2 and WN =
∑2N−1

k=0 γ(k)γ(k + 1). Then, by (1.2),
we have {

SN+1 = (3/2)SN + (1/2)WN − (2/9)
WN+1 = −SN −WN + (4/9)

(N = 1, 2, · · · )

with S0 = 1, W0 = −1/3. This linear equation has eigenvalues 1±
√
17

4 .
Hence, the following theorem holds.

Theorem 1. (Zaks, Pikovsky and Kurths [6])

K−1∑
k=0

|γ(k)|2 � K1−D2 (as K → ∞)

holds with

D2 = 1− log
1 +

√
17

4
/ log 2 = 0.64298 · · · ,

which is called the correlation dimension.

Since the system ([0, 1), µ, T ) is ergodic, by the Shannon-McMillan-Breiman
theorem

lim
n→∞

− logµ(Ξn(x))

n
= hµ(T ) (3.1)

holds µ-almost surely, where we denote

Ξn = {[k2−n, (k + 1)2−n); k = 0, 1, · · · , 2n − 1}

and Ξn(x) denotes the interval in Ξn containing x. On the other hand, by
Theorem 1, we have

lim
n→∞

log
∑N−1

n=0

∣∣∫ e2πinxdµ(x)
∣∣2

logN
= 1−D2. (3.2)
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We’ll show that hµ(T ) ≥ D2 log 2. We often consider [−1/2, 1/2) instead
of [0, 1) for the domain of the following Poisson kernel. For x ∈ [−1/2, 1/2),
let

Pr(x) =
1− r2

1 + r2 − 2r cos 2πx

be the Poisson kernel, where we always assume that 2/3 < r < 1.

Lemma 4. It holds that∫
Pr(x− y)dµ(x)dµ(y) � ((1− r)−1)1−D2 (as r → 1).

Proof Let p = 1 −D2. Then, there exists a constant 0 < C1 ≤ C2 < ∞
such that

C1N
p ≤ SN =

N−1∑
n=0

∣∣∣∣∫ e2πinxdµ(x)

∣∣∣∣2 ≤ C2N
p

as N → ∞. Therefore,

∞∑
n=0

rn
∣∣∣∣∫ e2πinxdµ(x)

∣∣∣∣2 = ∞∑
n=0

rn(Sn+1 − Sn)

=

∞∑
n=1

(rn−1 − rn)Sn =
1− r

r

∞∑
n=1

rnSn ≤ 1− r

r

∞∑
n=1

rnC2n
p

= C2
1− r

r
(log(1/r))−1−p

∞∑
n=1

e−n log(1/r)(n log(1/r))p log(1/r)

≤ 2C2(1− r)−p

∫ ∞

0
e−ttpdt = 2C2(1− r)−pΓ(p+ 1).

In the same way,

∞∑
n=0

rn
∣∣∣∣∫ e2πinxdµ(x)

∣∣∣∣2 ≥ (1/2)C1(1− r)−pΓ(p+ 1).

Thus, we have

∞∑
n=0

rn
∣∣∣∣∫ e2πinxdµ(x)

∣∣∣∣2 � ((1− r)−1)1−D2

On the other hand, since

∞∑
n=0

rn
∣∣∣∣∫ e2πinxdµ(x)

∣∣∣∣2 = (1/2)(

∫
Pr(x− y)dµ(x)dµ(y) + 1),

we completes the proof. 2
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Lemma 5. For any x with |x| ≤ 1− r, it holds that

Pr(x) ≥ (1/40)(1− r)−1.

Proof Since cos 2πx ≥ 1− 2π2x2 holds for any x, we have

Pr(x) ≥
1− r2

1 + r2 − 2r(1− 2π2x2)
=

(1 + r)(1− r)

(1− r)2 + 4rπ2x2
≥ 1− r

(1− r)2 + 39x2
.

Hence, if |x| ≤ 1− r, then Pr(x) ≥ (1/40)(1− r)−1. 2

Theorem 2. It holds that hµ(T ) ≥ D2 log 2.

Proof Assume (3.1)(3.2). Let α = hµ(T )/ log 2. Then for any ε with
0 < ε < 1/2, there exists n0 such that for any n ≥ n0,

µ({x; (α− ε)n log 2 ≤ − logµ(Ξn(x)) ≤ (α+ ε)n log 2}) ≥ 1− ε.

Hence, there exists S ⊂ {0, 1, · · · , 2n − 1} such that

(2−n)α+ε ≤ µ([k2−n, (k + 1)2−n)) ≤ (2−n)α−ε

for any k ∈ S and

µ(∪k∈S [k2
−n, (k + 1)2−n)) ≥ 1− ε.

Moreover, since #S · (2−n)α−ε ≥ 1/2, we have #S ≥ (1/2)(2n)α−ε. Hence,

(µ× µ)(Λn) ≥
∑
k∈S

µ([k2−n, (k + 1)2−n))2

≥
∑
k∈S

(2−n)2α+2ε ≥ (1/2)(2n)α−ε(2−n)2α+2ε = (1/2)(2−n)α+3ε,

where
Λn =

∪
k∈S

[k2−n, (k + 1)2−n)× [k2−n, (k + 1)2−n).

If 2−n ≤ 1 − r < 2−n+1, then |x − y| ≤ 1 − r if (x, y) ∈ Ξn. Hence,
Pr(x− y) ≥ (1/40)(1− r)−1 by Lemma 5. Therefore,∫

Pr(x− y)dµ(x)dµ(y) ≥
∫
Λn

Pr(x− y)dµ(x)dµ(y)

≥
∫
Λn

(1/40)(1− r)−1dµ(x)dµ(y) ≥ (1/40)(1− r)−1(µ× µ)(Λn)

≥ (1/40)(1− r)−1(1/2)(2−n)α+3ε ≥ (1/80)(1− r)−1((1/2)(1− r))α+3ε.

Thus,

1−D2 = lim
r→1

log
∫
Pr(x− y)dµ(x)dµ(y)

− log(1− r)
≥ 1− α− 3ε.

Since ε > 0 is arbitrary, we have hµ(T )/ log 2 = α ≥ D2. 2

Remark 1. The relation between the local dimension and
∫
Pr(x−y)dµ(y)

is discussed in a general framework by Wen and Zhang [7] or Cao, Xi and
Zhang [8]. Though Theorem 2 might follow from them, we give an indepen-
dent proof for to be self-contained.
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4 Product form of µ and K-property

Properties of the spectral measure µ of the Thue-Morse sequence ω is dis-
cussed in [3] and [5] in a general setting. We recall some of them.

Lemma 6. The measure µN defined as

dµN (x) = (1/N)

∣∣∣∣∣
N−1∑
n=0

ω(n)e2πinx

∣∣∣∣∣
2

dx

converges in the weak sense to µ as N → ∞.

Proof For any k ∈ Z, we have∫
e2πikxdµN (x) = (1/N)

N−1∑
n,m=0

ω(n)ω(m)

∫
e2πi(n−m+k)xdx

= (1/N)

N−1∑
n=0

0≤n+k<N

ω(n)ω(n+ k).

Hence, limN→∞
∫
e2πikxdµN (x) =

∫
e2πikxdµ, which completes the proof. 2

The following Theorem was proved by M. Keane (see [5]) for the first time.

Theorem 3. It holds that

dµ(x) =
∞∏
k=0

(1− cos 2π2kx)dx,

where the infinite product converges in the weak sense. (See Figure 1.)

Proof For n ∈ N with n < 2N , let n =
∑N−1

k=0 nk2
k be the 2-adic repre-

sentation of n. Then, ω(n) =
∏N−1

k=0 (−1)nk . Therefore,

dµ(x) = w- lim
N→∞

2−N

∣∣∣∣∣∣
2N−1∑
n=0

ω(n)e2πinx

∣∣∣∣∣∣
2

dx

= w- lim
N→∞

2−N

∣∣∣∣∣∣
2N−1∑
n=0

N−1∏
k=0

(−1)nke2πink2
kx

∣∣∣∣∣∣
2

dx

= w- lim
N→∞

2−N

∣∣∣∣∣∣
N−1∏
k=0

∑
nk=0,1

(−1)nke2πink2
kx

∣∣∣∣∣∣
2

dx

= w- lim
N→∞

N−1∏
k=0

2−1
∣∣∣1− e2πi2

kx
∣∣∣2 dx

=
∞∏
k=0

2−1
∣∣∣1− e2πi2

kx
∣∣∣2 dx =

∞∏
k=0

(1− cos 2π2kx)dx
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2

Theorem 4. The system ([0, 1), µ, T ) is of Kolmogorov type. That is, it has
the trivial tail field.

Proof Let B be the Borel field of [0, 1). For n ∈ N, let Bn = {T−nB; B ∈
B}. Note that Bn is a Borel field such that B = B0 ⊃ B1 ⊃ B2 ⊃ · · · . The
tail field of the system ([0, 1), µ, T ) is defined to be ∩∞

n=0Bn.
To prove that ([0, 1), µ, T ) has a trivial tail field, it is sufficient to prove

that
lim

K→∞
E[e2πilx|BK ](x) = E[e2πilx] = γ(l)

holds for any l ∈ N and µ-almost all x ∈ [0, 1). Take a large K and N of
the form N = (2N ′ + 1)2K with N ′ ∈ N. By Lemma 6, we have

E[e2πilx|BK ](x) = lim
N→∞

2K−1∑
j=0

e2πil(x+j2−K)dµN (x+ j2−K)/

2K−1∑
j=0

dµN (x+ j2−K)

= lim
N→∞

2K−1∑
j=0

e2πil(x+j2−K)

∣∣∣∣∣
N−1∑
n=0

ω(n)e2πin(x+j2−K)

∣∣∣∣∣
2

/

2K−1∑
j=0

∣∣∣∣∣
N−1∑
n=0

ω(n)e2πin(x+j2−K)

∣∣∣∣∣
2

= lim
N→∞

N−1∑
n,m=0

m≡n+l (mod 2K )

ω(n)ω(m) /
N−1∑
n,m=0

m≡n (mod 2K )

ω(n)ω(m).

Let n ≡ m (mod 2K) and n = n1 + n22
K and m = n1 + m22

K with
0 ≤ n1 < 2K . Then, in the addition n + l, the carry goes up to the 2K

term only for a small portion of n1, say l/2K . In the other case, we have
n+ l = n1 + l + n22

K with 0 ≤ n1 + l < 2K , and hence,

ω(n)ω(m+ l) = ω(n1)ω(n1 + l)ω(n2)ω(m2).

In the other case, we can write

ω(n)ω(m+ l) = ξω(n1)ω(n1 + l)ω(n2)ω(m2)

with ξ ∈ {−1, 1} depending on n and m. Therefore, we can write

N−1∑
n,m=0

m≡n+l (mod 2K )

ω(n)ω(m) = 2K(γ(l) + o(1))
∑
n2,m2

ω(n2)ω(m2)

with o(1) which tends to 0 as K → ∞. Therefore,

lim
N→∞

N−1∑
n,m=0

m≡n+l (mod 2K )

ω(n)ω(m) /

N−1∑
n,m=0

m≡n (mod 2K )

ω(n)ω(m)

= lim
N→∞

2K(γ(l) + o(1))
∑

n2,m2
ω(n2)ω(m2)

2K
∑

n2,m2
ω(n2)ω(m2)

= γ(l),
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since
∑

n2,m2
ω(n2)ω(m2) = (

∑2N ′

n2=0 ω(n2))
2 = 1. 2

5 Random walk

Let X0, X1, X2, · · · be the random walk on the open interval [0, 1) such that
the transition probability satisfies that

P (Xn+1 = y |Xn = x) =


(1− cosπx)/2 (y = x/2)
(1− cosπ(x+ 1))/2 (y = (x+ 1)/2)
0 (otherwise)

(5.1)

for any n = 0, 1, 2, · · · . For k = 1, 2, · · · , denote the k-step transition prob-
ability by Pk(y|x). That is,

Pk(y|x) = P (Xn+k = y |Xn = x) (n = 0, 1, 2, · · · ).

Theorem 5. The random walk {X0, X1, X2, · · · } has the unique stationary
measure µ. Thus, it is mixing. (See Figure 2.)

Proof Let the distribution of X0 be µ and the distribution of X1 be ν.
Then, we have

dν(y) =

{
((1− cosπ2y)/2)dµ(2y) (y < 1/2)
((1− cosπ2y)/2)dµ(2y − 1) (y ≥ 1/2)

.

Since

dµ(2y) = dµ(2y − 1) =

∞∏
k=0

(1− cos 2π2k2y)d(2y) = 2

∞∏
k=1

(1− cos 2π2ky)dy,

we have

dν(y) =
∞∏
k=0

(1− cos 2π2ky)dy = dµ(y).

Hence, µ is a stationary measure of the random walk.
Take an arbitrary x0 ∈ [0, 1) and consider the random walkX0, X1, X2, · · ·

starting at X0 = x0. We prove that the distribution of XK , denoted as
L(XK |x0) converges weakly to µ as K → ∞. This implies that the random
walk is mixing and µ is the unique stationary measure of the random walk.

We prove that

lim
K→∞

EK [e2πilx] =

∫
e2πilxdµ(x) = γ(l)

holds for any l ∈ N, where EK is the expectation with respect to L(XK |x0).
Since

L(XK |x0) =
2K−1∑
j=0

K−1∏
k=0

(1− cos 2π2k((x0 + j)2−K) · 2−Kδ(x0+j)2−K
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and
K−1∏
k=0

(1− cos 2π2kx) = (1/2K)

∣∣∣∣∣∣
2K−1∑
n=0

ω(n)e2πinx

∣∣∣∣∣∣
2

,

we have

lim
K→∞

EK [e2πilx] = (1/22K)

2K−1∑
j=0

e2πil(x0+j2−K)

∣∣∣∣∣∣
2K−1∑
n=0

ω(n)e2πin(x0+j2−K)

∣∣∣∣∣∣
2

= lim
K→∞

(1/2K)

2K−1∑
n,m=0

ω(n)ω(m) · (1/2K)

2K−1∑
j=0

e2πi(n−m+l)(x0+j2−K)

= lim
K→∞

(1/2K)

2K−1∑
n,m=0
m=n+l

ω(n)ω(m) = γ(l),

which completes the proof. 2

Lemma 7. It holds for any δ > 0, j = 1, 2, · · · and z ∈ [0, 1) that∫
1|x−y+z|≤jδ dµ(x)dµ(y) ≤ 6j

∫
1|x−y|≤δ dµ(x)dµ(y)

Proof Take n such that 2−n < δ ≤ 2−n+1. Then, the set {(x, y) ∈ [0, 1)×
[0, 1); |x − y + z| ≤ jδ} is covered by at most 6j number of sets of the
following type

2n−1∪
k=0

[k2−n, (k + 1)2−n)× [(k + h)2−n, (k + h+ 1)2−n).

where [−1/2, 1/2) is identified with R/Z and the intervals are considered in
the modulo 1 sense. Moreover, since∑

k=0,1,··· ,2n−1

µ([k2−n, (k + 1)2−n))2

≥
∑

k=0,1,··· ,2n−1

µ([k2−n, (k + 1)2−n))µ([(k + h)2−n, (k + h+ 1)2−n)),

we have

6j

∫
1|x−y|≤2−n dµ(x)dµ(y)

≥ 6j
∑

k=0,1,··· ,2n−1

µ([k2−n, (k + 1)2−n))2

≥
∑

i=1,··· ,6j

∑
k=0,1,··· ,2n−1

µ([k2−n, (k + 1)2−n))µ([(k + hi)2
−n, (k + hi + 1)2−n))

≥
∫

1|x−y+z|≤jδ dµ(x)dµ(y).

2
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Lemma 8. Let r < 1 be sufficiently close to 1. Then, for ε = 2−n0 such
that 2−n0 ≤ 1− r < 2 · 2−n0, we have
(1) (1− r)−11|x|≤ε ≤ 40Pr(x) for any x ∈ [−1/2, 1/2), and
(2)

∫
Pr(x− y)dµ(x)dµ(y) ≤ 8(1− r)−1

∫
1|x−y|<εdµ(x)dµ(y).

Proof (1) follows from Lemma 5.
For n = 1, 2, · · · , n0, let b(n) = Pr(2

−n). Since

Pr(x) ≤ 2(1− r)−1 · 1|x|≤ε +

n0−1∑
n=1

b(n+ 1)12−n−1<|x|≤2−n

and by Lemma 7,∫
12−n−1<|x−y|≤2−ndµ(x)dµ(y) = 2

∫
1|x−y−(3/2)2−n−1|≤2−n−2dµ(x)dµ(y)

≤ 12 · 2n0−n−2

∫
1|x−y|≤2−n0dµ(x)dµ(y),

we have ∫
Pr(x− y)dµ(x)dµ(y)

≤

(
2(1− r)−1 +

n0−1∑
n=1

12 · 2n0−n−2

)∫
1|x−y|≤εdµ(x)dµ(y)

≤ (2(1− r)−1 + 3 · 2n0)

∫
1|x−y|≤εdµ(x)dµ(y)

≤ 8(1− r)−1

∫
1|x−y|≤εdµ(x)dµ(y),

which completes the proof. 2

Theorem 6. It holds that

lim
N→∞

∫
PN ((x− ε, x+ ε)|x)dµ(x) � εD2 (as ε → 0),

where PN (· | ·) is the N -step transition probability of the above random walk.

Proof Since the random walk is mixing, we have

lim
N→∞

∫
PN ((x− ε, x+ ε)|x)dµ(x) =

∫
1|x−y|<εdµ(x)dµ(y).

Hence, by Lemmas 4 and 8 with ε ≤ 1− r < 2ε,

lim
N→∞

∫
PN ((x− ε, x+ ε)|x)dµ(x) =

∫
1|x−y|<εdµ(x)dµ(y)

� (1− r)

∫
Pr(x− y)dµ(x)dµ(y) � (1− r)D2 � εD2 (as ε → 0),

which completes the proof. 2
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Figure 1: Approximation of the measure µ as
∏200

k=0(1− cos(2π2kx))dx

Figure 2: Time average of the random walk Xn (n = 0 to 10000)
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