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VAN DER CORPUT’S DIFFERENCE THEOREM

BY
T. KAMAE AND M. MENDES FRANCE

ABSTRACT

We obtain a sufficient condition for a subset H of positive integers to satisfy that
the equidistribution (mod 1) of the sequences (Upson — Un; n=1,2,---) for all
h € H implies the equidistribution of (u,). Our condition is satisfied, for
example, for the following sets: (1) H = {n—-m;nel,mel n>m}, where |
is any infinite subset of integers; (2) H = {| y(n)|; ¥(n)#0, n € Z}, where ¢ is
a nonconstant polynomial with integral coefficients having at least one integral
zero (mod gq) forallg =2,3,---; Q) H={p+1;p isa prime} and H ={p — 15 p
is a prime}.

§1. Introduction

We wish to illustrate in this article the relationship between the properties of
positive definite sequences and that of the distribution (mod 1) of real sequences.
The idea goes back to Bass [1], Bertrandias [2] and Cigler [3]. (Another kind of
link was discovered by Elliott [6] and Niederreiter and Philipp [11] some years
later.) Our concern is mainly that of the first mentioned authors who have used a
harmonic analytic proof of the celebrated van der Corput theorem according to
which the equidistribution (mod 1) of the sequences (U — u,) forh =1,2,3,---
implies the equidistribution of (u.). Several extensions of this result are known.
For example, if (tn.» — u,) is equidistributed (mod 1) for all h#0 of a set of
density 1, then again (u,) is equidistributed (mod 1) together with the subsequ-
ences (Uam-s), @ EN={1,2,3,---}. The result also holds if h # 0 runs through
the set of multiples of a positive integer (a result of Delange, see 2D

We shall exhibit here a large class of zero density sequences with the van der
Corput property: if (Un.» — U,) is equidistributed (mod 1) for all h € H, then
(4--») is equidistributed (mod 1) for all integers a = 1 and b. In particular, if I is
any infinite set of integers
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H={n-m|n€lLme&Ln>m} and H={n’|neN}
share the van der Corput property. Another example is the set of “primes minus
one” (or plus one). The three last examples are in close relationship with deep
results due to Sarkozy [16], [17], [18].
82. A property of positive definite sequences

Let y : Z— C be a nonzero positive definite sequence, with | ¥(0)| = 1. In other
words, a sequence y = (y(n)) for which there exists a positive measure A with
A(T) =1 defined on the torus T = R/Z satisfying

y(n)= f exp2imnx A(dx), ne€Z.
T
We shall write equivalently

A(dx)~ D y(n)exp(— 2imnx ).

Let H CN and let f be an exponential polynomial, the spectrum of which is
contained in H:

fx)= z f(h)epoimkx,
where
f(n)= f f(x)exp(— 2imnx)dx, nsz

is nonzero for only finitely many n’s all of which lie in H. It is then clear that
1) [ ren@n =3, fovn)

a finite sum.

Let P(H) be the set of exponential polynomials f with spectrum in H, such
that f(0)=1 and |f(x) =1 for every x € T. Denote by P*(H) the minimum
family of functions on T containing P(H), which is closed under the pointwise
convergence of functions.

Let 6 = 0; PX(H) represents the possibly empty set of f’s in P*(H) such that

Re{f(x)}= -5 forallx € T.

Suppose P3(H)# < and let f € P(H). Then obviously
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[ Retfeiatan = adon-s
Assume that y vanishes on H. Then by (1)
J’T g(x)A(dx)=0 for any g € P(H).
Therefore
L g(x)A(dx)=0 for any g € P*(H).

Applying this for f, we then have Adop =4
We have thus proved the following result.

Tueoz=m 1. Let y be a nonzero positive definite sequence with spectral
measure A such that |y(0)|=1. Let HCN be a set of integers such that both
conditions hold:

(i) for some 8 =0, PX(H)# <.

(i) Vh € H, y(h)=0.

Then

A{oph=aé.

83. An application to van der Corput’s difference theorem

Before describing sets H which satisfy conditions of the theorem we shall state
and establish a result related to the theory of equidistribution (mod 1).

CoroLLARY. Let (u,) be an infinite sequence of real numbers reduced
(mod 1). Let H C N be a set of integers for which the sequence (Un-» — u,)(h € H)
is equidistributed (mod 1). If P3(H) # D forall 8 >0. then (u.) is equidistributed

(mod 1) and so are the sequences (Uw-s). A < N,bEZ

Proor. Let @ :N—C be a sequence such that a(n)=o(} n) and

There exists a sequence S CN for which the following limits exist:
N

>, a(n)

n=1

N
im—| Y a(n)!| =limsup =
m=1 pN

N—s=

and
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1 & —
‘12}? Z!a(u)a(n*q)=y(q). Vg €L
It is well known that ¥ 1S positive definite (see (12 Bl or [9]). Let A be the
associated spectral measure. By corollary 2 m [41. or [2]

b

1 a(n) | =[AGOD]

|

Em sup

2

-

Let H C N be the set of zeros of y_ I for all 3 >0. P%H)# . then, according
to the theorem A(don=0:

ims.p‘!:; i a(nl‘vl =0
e N | o= {

Choose a(n)= explizku. k € Z*. WexTs criterion implies the equidistribu-
tion (mod 1) of () '
Observe now that the equidistribution (mod 1) of (-2 — ) is the same as
that of (Un-n — Un T hx),-hence the hypothesis also imphies the cquidistribution
(mod 1) of (u~ + nx)forallx €T. Standard techniques developed in [5], [10] and
[14] then show that (Uan-v) 18 equidistributed (mod 1) for all a = N.bELZ

ReEmaRrk. Actually the conclusion can be widened. Let & be the family of
sequences (8.) such that (v, + 8,) 18 equidistributed (mod 1) if and only if (v.) is
(this class is discussed by Rauzy in [12], [13] and by Rindler in [15]). Let = & be
the set of sequences (¢n) such that (1= @n) E P for example @, = xn OF
@n = xn logn. Then under the conditions of the corollary. not only is ()
equidistributed (mod 1) but also (u. + @) for all (¢.) EZR. Again. using results
from [5] or [10], if (m,) is an increasing sequence of integers such that
(mn)= O(n) and such that its characteristic function is almost periodic in the
sense of Besicovitch, it can easily be shown that (u-. + @) 1S equidistributed
(mod 1).

§4. Three examples

Exampie 1. H=N. Define

N
fu(x)= —11\7 Z exp2imxn

n=1

_ sinmxN . JCRSE
= N sinmx exp (im (N + 1)x) if x#0.

Hence
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0 if x#0,

f(x)= lim Mx):{
' 1 if x =0.

Thus f € P(N) so P%(N)# . The corollary applied to N is then van der
Corput’s classic theorem.

ExampLE 2. Let I be any infinite set of integers. Then H=(I—-1)"=
{p—q lp €1, q €1 p>q} verifies the property P3(H)# < for any & >0.
Indeed, suppose J is a finite subset of I and let

[J|=cardJ =1+ 1/8.

Define the function f;:

Fr0) = FEoT) S exp2ime(p — a).

peJ
q€EJ
p>q
Then
1 . 2
Re{f,(x)}=—~—-—[”2_'ﬂ ’ Ejepoqux “T7T=1
qE |
Z 7o

Thus f, € P%(H). Hence H is a van der Corput set: the equidistribution
(mod 1) of (4., — u..4) forall p € I, q € I, p# q implies the equidistribution
(mod 1) of (Ua.») for all integers a =1 and b.

ExaMpLE 3 (suggested by Sarkozy’s results [16], [17], [18] and Furstenberg’s
[8] theorem 1.2, p. 208). Let H C N. For every q €N, define

H,={h € H|h =0 (mod q!)}.

If for infinitely many g, the sequence xH, is equidistributed (mod 1) for all
irrational x (H, is hence necessarily infinite), then H is a van der Corput set.

Before establishing our claim, let us give two examples of such an H. First let
¢ € Z[X] be a nonconstant polynomial which has at least one integral zero
(mod q) for all ¢ €N. Then

H)={|y(n)||¢(n)#0, n € Z}

satisfies the above condition. Using our Theorem 2 (below), it is easy to check
that if ¢ has no integral zero (mod q) for some g then H(¥) is not a van der
Corput set.
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Another example is the set of primes plus 1, or the set of primes minus 1 (this i"
follows from Vinogradov’s theorem on the equidistribution (mod 1) of the
sequence (xp) where x is irrational and where p runs through the set of primes: -
see [7], p. 347). Again, Theorem 2 implies that the primes plus k is not a van der
Corput set if k is different from =1.

We now prove the claim. Let

.f"iq (I) = m -§‘ exp 2inxh,,

k. =0(modg?)

where A (N, q) denotes the number of terms in the sum. For any irrational x,
Em fi,(x)=0

by WeyT’s criterion. Since Q is countable, we can select a subsequence {N'} of N

such that fy.,(x) converges for every x €T as N’ goes to infinity. Let g, (x) be
the limit. Quite obviously,

1 ifxeqQ,
j(x)=lim g, (x) =
0 if xZQ.
Thus j € P§(H) and consequently H has the van der Corput property.

§5. Negative results

We shall now give a condition which enables us to construct sets which are not
van der Corput sets. For any sequence § CN we define the upper density

N
A(S)=limsup = > xs(n)
N—x N n=1
where ys is the characteristic function of .

THEOREM 2. If there exists a set A with nonzero upper density such that
(A—A)NH =, then H cannot be a van der Corput set.

Proor. Let u = (u,) be an infinite sequence of real numbers (mod 1) which
vanishes on A:

nEA > u,=0.

The sequence u cannot be equidistributed (mod 1). Let k € N. Then
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0 fneAand n+k€EA,
~ _— if n& A and n+k €A,
Unsie = Un = Hsn ifn€Aand n+kZA,

Upok — Un ifnZA andn+kgA.

It k € H, the two conditions n & A and n+k €A cannot hold. It can then
easily be seen that for almost all u €T, the sequences (Un+k ~ u,) are
equidistributed (mod 1) for all k € H.

Using results of C. Stewart and R. Tijdeman [19] one can then give examples
of sequences H which do not have the van der Corput property. Such are

(1) Finite unions of arithmetic progressions which do not contain all the
multiples of some positive integer.

(2) Lacunary sequences H ={h,<h,<---}. More precisely sequences such
that there exists an i €N for which

liminf hn.i/h. > 1.

n—o

86. Final remark

It seems interesting to study the family of sequences K CN which have the
following property. There are no positive discrete bounded measures A such that

k—>o

kEK

limf exp2imkx A(dx)=0.
T

These sets are obviously related to the van der Corput sets. (Katznelson denotes
this family by FC™: the above condition forces the continuity of positive

measures.)
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