Maximal pattern complexity for discrete
systems

Ergodic Theory and Dynamical Systems 22-4 (2002), pp.1201-1214

Teturo Kamae* and Luca Zambonif

Abstract

For an infinite word @ = agajasy--- over a finite alpha-
bet, the authors introduced a new notion of complexity called
maximal pattern complexity defined by

Pz (k) ‘= sup ﬁ{an—I—T(O)O‘n—I—T(l) o Quyr(k-1) M= 0,1,2,-- }

where the supremum is taken over all sequences of integers
0=17(0) < 7(l) <---<7(k—1) of length k. The authors
proved that « is aperiodic if and only if p% (k) > 2k for every
k=1,2,---. A word o with p3(k) = 2k for every £ > 1
is called pattern Sturmian. In this paper, we give a simple
criterion to be pattern Sturmian and exhibit a new class of
recurrent pattern Sturmian words which do not arise from
rotations. We also investigate the maximal pattern complex-
ity of various discrete dynamical systems including irrational
rotations on the circle, and self-similar systems generated by
substitutions. We show that for each irrational rotation on
the circle, there exists a twofold partition of the circle, with re-
spect to which the system generated has full maximal pattern
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complexity with probability 1. Using the arithmetic prop-
erties of the underlying numeration system associated to a
substitution dynamical system, we prove that the maximal
pattern complexity of the fixed point of the Rauzy substitu-
tion 1 — 12 2 — 13 3 — 1 has exponential growth. It is
well known that the system generated by the Rauzy substitu-
tion is isomorphic in measure to an irrational rotation on the
2-torus.

1 Introduction

Let a = agajas ... € AY be an infinite word over a finite alphabet
A with $4 > 2, where N = {0,1,2,--- } and A denotes the number
of elements in A.
For k > 1, let F,(k) denote the set of all factors of o of length k,
that is
Fa(k) = {anan+1 T Qpgp—1; NE N},

and set F,(0) = {e} where ¢ denotes the empty word, the unique
word of length zero. Set

F(a) = Fu(k).

k>0

The block complexity function p, : N — N is defined as p, (k) :=
§F, (k). A fundamental result due to Hedlund and Morse states that
a word « is eventually periodic if and only if for some k the block
complexity p, (k) < k. (See [8]).

Infinite words « such that p,(k) = k+1 (k=0,1,2,---) are called
Sturmian sequences or Sturmian words. The best known example is
the so-called Fibonacci word

12112121121121211212112112121121121211212112112121121 ...

fixed by the substitution 1 +— 12 and 2 — 1. It is well known that
all Sturmian words can be realized geometrically by an irrational
rotation on the circle (see [5, 8]). More precisely, every Sturmian
word is obtained by coding the orbit of a point = on the circle (of
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circumference one) under a rotation by an irrational angle § where the
circle is partitioned into two complementary intervals, one of length
6 and the other of length 1 — #. And conversely every such coding
gives rise to a Sturmian word.

Let k be a positive integer. By a k-window 7, we mean a sequence
of integers of length k& with

0=700)<7(l)<7(2) <---<7(k—1).

A k + 1-window 7' is called an immediate extension of the above 7
if 7'(¢) = 7(¢) (e = 0,1,--- ,k —1). In this case, we also call 7 the
immediale restriction of 7. Let o = agaqas--- be an infinite word
over a finite alphabet.

For each k-window 0 = 7(0) < 7(1) < --- < 7(k —1) put

Fa(T) = {Ozn_H.(o)Ozn_I_T(l) e an—|—7’(k—1); n —= 07 17 27 e }

The mazimal pattern complezity function p?, : {1,2,3,---} — {1,2,3,---

introduced by the authors in a recent paper [6], is defined by
pr(k) i=suptFa(r) (E=1,2,3,---),

where the supremum is taken over all k-windows 7. A k-window 7 is
said to attain pZ (k) if §F.(7) = pi(k).

This notion of complexity is intimately related to sequence entropy
(see [6]). In fact, in [6] it is shown that any infinite word o which
induces a dynamical system with a partially continuous spectrum
satisfies

lim sup(1/k)log p (k) > 0.
k—o0
As in the case of block complexity, maximal pattern complexity
also gives a characterization of eventually periodic words:

Theorem 1 ([6]). An infinite word « is eventually periodic if and
only if for some k the maximal pattern complexity p (k) < 2k — 1.

Infinite words « of maximal pattern complexity p% (k) = 2k (k =
1,2,3,---) are called pattern Sturmian words. Thus amongst all ape-
riodic words, pattern Sturmian words are those of lowest maximal



pattern complexity. If « is pattern Sturmian, then « is a binary
word since pi (1) = 2.

It is proved in [6] that for any irrational  with 0 < 6 < 1, any
interval I C R with 0 < /| < 1 and any « € [0,1), pi(k) = 2k (k =
1,2,--+) for o« =R(0,1,2,7Z), where

0 if e +nd €1 (mod Z)

1 otherwise

R(0.1,2,Z), = { (1.1)

In particular, every Sturmian word is pattern Sturmian, but not con-
versely, since if in the above |I| ¢ {6,1 — 0}, then « is not Sturmian
(see [11]).

In this paper, we begin by giving a new proof that every Sturmian
word is pattern Sturmian. Our proof differs from the original proof
given in [6] in that it is purely combinatorial in nature, and relies
only on the balanced property of Sturmian words (Section 2).

In Section 3, we give a simple criterion to be pattern Sturmian
and apply it in Section 4 to exhibit a new class of recurrent pattern
Sturmian words which do not arise from a rotation. These words are
special kinds of so called Toeplitz words and the dynamical systems
induced by them have rational discrete spectrumes.

Sections 5 and 6 are devoted to the study of the maximal pat-
tern complexity of various discrete dynamical systems: In Section 5
we show that for each irrational rotation on the circle, there exists
a twofold partition of the circle, with respect to which the system
generated has full maximal pattern complexity with probability 1.
In Section 6, we investigate the maximal pattern complexity of the
self-similar dynamical system generated by the Rauzy substitution
([9], also called the Tribonacci substitution):

1 — 12
2 — 13 (1.2)
3 — 1

Rauzy showed that the subshift (X, T') generated by this substitution
is a natural coding of a rotation on the torus T?, i.e., is measure-
theoretically conjugate to an exchange of three fractal domains on a



compact set in R%, each domain being translated by the same vector
modulo a lattice. The fixed point 3 of the Rauzy substitution of (1.2)
has block complexity ps(k) = 2k + 1 and is just one example of a
broader class of sequences of complexity 2k + 1 originally studied by
Arnoux and Rauzy in [2] now called Arnous-Rauzy sequences. From
the point of view of block complexity, this § is the simplest natural
generalization of Sturmian sequences to a 3-letter alphabet, with the
Tribonacci substitution, the analogue of the Fibonacci substitution
(see also [10, 7]), and is called the tribonacci word. However from the
point of view of maximal pattern complexity, Sturmian words and
the tribonacci word exhibit a drastically different behavior. While
Sturmian words are pattern Sturmian, we show that the maximal
pattern complexity of 3 has exponential growth (see Theorem 6).
Our proof relies on the arithmetic properties of the underlying nu-
meration system associated to a substitution dynamical system.
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2 A new proof that Sturmian implies pat-
tern Sturmian

In this section we give a combinatorial proof of the following result

first proved in [6] using geometric arguments:

Theorem 2. lLet o = agojog--- € {0,1}N be a Sturmian word.
Then o is pattern Sturmian.

Proof. Since a is aperiodic, by Theorem 1 we have pZ (k) > 2k (k =
1,2,3,---). To prove that « is pattern Sturmian, it is sufficient to



prove that pi(k) < 2k (k = 1,2,3,---). Take an arbitrary integer
kE>1and a k-window 7: 0 =7(0) < 7(1) < --- < 7(k —1). We will
show that §F(7) < 2k.

Consider the set S of words ¢ = ¢oc¢s - - - Car_s on N7 such that
there exists n € N satisfying that

Coi = Qpyrgy (0=0,1,--- k—1)

and
n+7(i+1)-1

C2i41 — Z 871 (izovlv"'vk_Q)'

t=n+7(7)+1
Let ¢ : S — N* be the mapping defined by

@/)(C) = CpCaCq " " " C2k—2

for any ¢ € S. Then since (S) = F,(7), we have {F (1) < §5.
Therefore, it is sufficient to prove that 5 < 2k.
Since « is balanced, it holds that

l(ei+cipr+ - +e¢)—(di+digr+---+dj)| <1 (2.1)

for any ¢,d € S and 7,7 with 0 <: <5 <2k — 2.
For:=0,1,---,2k —1, let m; : S — Ni*! be the mapping defined
by

mi(c) = cocrea - - ¢

for any ¢ € S. Then we have fmo(S) = #{0,1} = 2. Therefore to
prove £S5 < 2k, it is sufficient to prove that

(mian(S) < gl S) + 1 (2.2)

forany ¢ = 0,1,2,--- ,2k — 3 since S = mar_2(5).
Suppose to the contrary that

tmiga(S) = 4mi(S) + 2 (2.3

)
holds for some ¢ =0,1,2,--- ,2k—3. By (2.1), any cocy - - - ¢; in m;(.S)
has at most 2 extensions in m;11(5), that is, there exists at most 2
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elements u € N such that coeq---cu € mi41(S). Hence by (2.3),
there exist at least 2 elements, say cocy - --¢; and dopd; - - - d; having
2 extensions in m;41(S5). That is, there exist u,v € N with u # v
such that all of cocy -+ - cu, coey -+ - v, dody -+ - diu, dody -+ - d;v are
in m41(5). Let h be the maximum integer such that A < i and
¢n # dp. Without loss of generality, we assume that v — v > 1 and
¢, —dp, > 1. Then we have

(en +enpr -+ e +u) = (dy + dppr + -+ di +v) > 2,

which contradicts (2.1).
Thus we have (2.2) as required. O

3 A criterion for pattern Sturmian words

In this section we establish the following criterion for pattern Stur-
mian words :

Theorem 3. An aperiodic binary infinite word « is pattern Sturmian
if $FL (") < BF.(7) + 2 holds for any 3-window 7', where T is the

immediate restriction of 7'.

Proof. Assume that o satisfies the conditions in Theorem 3. Then,
po(1) =2 and p*(2) = 4 holds by Theorem 1.

Suppose that there exists & > 2 such that pZ(k + 1) > pi(k) + 3.
There exits a k + 1-window 7" which attains p%(k + 1). Let 7 be the
immediate restriction of 7/. Then we have

(7)) +3 < ghu(7) (3.1)

PFo(m) + 3 < po(k) + 3 < pi(k+ 1) = tFu(7').

Take the minimum k such that there exists a k£ 4+ I-window 7' sat-
ifying (3.1), where 7 denotes the immediate restriction of 7/. By the
above argument, such k exists, while £ > 3 holds by our assumptions.

Since « is a word over 2 letters, say over {0,1}, and (3.1) holds,
there exists at least 3 different words, say u',u? u®> € F,(r) which
have 2 extensions in F,(7').



Any of 0 and 1 is in the set of last letters of u', u? u>, since oth-
erwise, we can write u' = v'a,u? = v’a,u® = u®a with a € {0,1}
and 3 different words u*, v, u® of length k — 1, so that the k-window
7(0) < 7(1) < -+ < 7(k = 2) < 7'(k) satisfies (3.1) contradidting
with the minimality of k. Hence, without loss of generality we may
assume that ! = u70,u? = ©®0,u® = u°1 with some words u", u8, u®
of length k& — 1. Since u! # u?, we have u” # u®. Therefore, there
exists a subscript ¢ with 0 < i < k—2 such that u! # «f. Then, the 3-
window " with »'(0) =0, »'(1) = 7(k—1)—7(2), 0'(2) = 7'(k) —7(7)
satisfies (3.1), contradicting the assumption in Theorem 3.

Therefore, we have pi(k + 1) < pi(k) + 2 for any k& > 2. This
implies that pf (k) = 2k for k =1,2,3,--- by Theorem 1. Thus, « is
pattern Sturmian as required. O

Remark 1. The converse of Theorem 3 is not true. Consider a pat-
tern Sturmian word o such that o« = R(0,1,0,7Z) with an irrational
6 and an interval I with 0 < |I| < 1/3. Take an integer n > 0
such that the fractional part {n@} satisfies that |I| < {nf} < 2|I]|.
Let 7 be the 2-window with 7(0) = 0 and 7(1) = n. Since x € [
implies that « + nf ¢ I (mod Z), we have F(7r) = {01,10,11}.
Let m be an integer such that m > n and {n8} — |I| < {m0} < |I].
Then, For the 3-window 7" which is an immediate extension of T with
7'(2) = m, we have F(7') = {010,011,100,101,110,111}. Thus, we
have $F, (1) + 3 = $F,(7') for a pattern Sturmian word «.

4 A class of recurrent pattern Sturmian
words not arising from rotations

In this section, we apply Theorem 3 to obtain a new class of recurrent
pattern Sturmian words which do not arise from rotations.

Definition 1. For « € {0,1} and integers [,r with [ > 2 and 0 <
r<il—1,let

pletn) = (a"?a"""")(a 26T - -



be a periodic word with period [ over 2 letters {a, 7}, where we denote

a’ =a---a. We define (@17 < gbms) € 10,1, 7} by replacing each
occurrence of “?” in B(»4) by the letters in 3™ one by one in the
order. That is,

(arbal—l—r)s(ar?al—l—r)(arbal—l—r)m—l—s .

An infinite word o = agagay ... over {0,1} is called a simple Toeplitz
word if there exists an infinite word

(Gm lo, 7“0)(@17 l, 7“1)(@27 ly, 7“2) T

satisfying that
(1) a; € {0,1} (+ = 0,1,2,---) with both of ¢; = 0 and a; = 1
infinitely often,
(2)l; >2(i=0,1,2,---), and
3)0<r, <l;—1(=0,1,2,---) with r; > 1 infinitely often
so that
o = 5(%71077’0) 4 ﬁ(alvlw’l) 4 5(00271277’2) Qe

We call (ag, lo, r0)(a1,l1,r1)(az,la,r9) - - the coding word of a.

It is not difficult to check that the simple Toeplitz word o with
coding word (ao,lo,70)(a1,l1,71)(az,l2,72) -+ can be written as an
infinite composition of the form

a= lim Pao,loro © Payly,ry © 770 0 loan7ln77’n(0)7
n—00

where p,;, denotes the substitution

I—1—r
0 = a- a()a

Palr : r —1—r (41)

1l - @---ala-

For example, let a be the fixed point of the substitution

0 — 01
qb'1—>00



for which ¢ 0 ¢ = pg 210 p121 holds. Then, « is the simple Toeplitz
word with coding word (0,2,1)(1,2,1)(0,2,1)(1,2,1)---.

Let a € {0,1} and set @ = 1 —a, so that 0 = 1 and 1 = 0. A simple
Toeplitz word « is called of type (a,l,r) or a if the coding word
(ao,lo,70)(a1,l1,71)(ag, l2,72) - -+ begin in (a,l,r), i.e. (ao,lo,m0) =
(a,l,7). In this case, o can be written as an infinite concatenation
of the factors a"aa'~'~" ==

and a"aa In fact, we can write @ =

pair(B) where [ is the simple Toeplitz word whose coding word is

(Gh l, 7“1)(@27 ly, 7“2)(6137 s, 7“3) T

Lemma 1. Let o be a simple Toeplitz word of type (a,l,r) and let
a = pais(B). Then, o, = a implies that n = r (mod [). Moreover,
Qpir = By holds for any n € N.

Proof. Clear from the definition (4.1) of the substitution p, ;.. O

Lemma 2. Let o be a simple Toeplitz word. Then for any 3-window
7', we have §F,(7") < $F,(7)+2, where T is the immediate restriction

of 7'

Proof. Suppose to the contrary that there exists a simple Toeplitz
word « and a 3-window 7/ such that

8FL(7") > 4F,(7) + 3, (4.2)

where 7 is the direct restriction of 7/. Let © be the set of all pairs

(ar, 7') of a simple Toeplitz word o and a 3-window 7’ such that

(*) either ¢ttt € F, (') and §(F,(7') \ {ttt, ttt}) > 4(Fa(7) \ {tt}) + 2

or (4.2) holds,

where t is the type of a. Take a pair (a,7') € © such that 7/(2) is

minimum among all the pairs in ©, which exists by (4.2). Let (a,l,r)
2
2

be the type of a. By (*), there exist 2 elements, say ujujul, uauiu

in I,(7') such that u} = u} = a and v} = v}, = a with i < j, 7/ < j
and {i,7}U{¢,5'} = {1,2,3}. Hence by Lemma 1, 7/(1) = 7/(2) =
0 (mod [). Let  be such that p,,;.(8) = a and 3-window 7’ be
such that n'(k) = 7/(k)/l (k = 0,1,2). Then by Lemma 1, we have
(B,n') € ©. Since n'(2) < 7'(2), this contradicts with the minimality

of 7/(2), which completes the proof. O
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Theorem 4. A simple Toeplitz word is a recurrent pattern Sturmian
word.

Proof. By Theorem 3 and Lemma 2, it is sufficient to prove that a
simple Toeplitz word is recurrent but not eventually periodic.
Let (ao, lo, r0)(a1,l1,r1)(az, lz,r2) - - - be the coding word for a. Let

LZ. — lo‘ll“‘li (@':071727...)
Ry = 1o
R, == Ri.y+Li—y-r; (l = 172737‘“)-

Then for any k € N, we have
5(%71077’0) 4 ﬁ(alvlw’l) g < ﬁ(akvlw’k) —

(ao . e aRk—l?aRk+1 . e aLk_l)(ao . e aRk—l?aRk+1 . e aLk—l) cee

Therefore for any k,n € N, either

Qnl, " Onl+L—1 = Qo QR —10aR, 41 -ar,_1
or

O, " Ol Le—1 = Qo QR —11lOR, 41 o, 1
holds for any n = 0,1,2,---. Moreover, both of these 2 cases occur
infinitely often since a’s contain infinitely many 0’s and 1’s.

This implies first that « is recurrent.

Secondly, this implies that « is aperiodic. Suppose to the contrary
that o is eventually periodic with period d > 0. Then there exists
N € N such that a.14 = a. holds for any ¢ > N. Since r; > 1 occurs
infinitely often, we have limg_.., By = oo. Take k such that d < Ry.
Take n, m such that nLy > N, mL; > N and

anLk Tt anLk-I—Lk—l — 050 Tt aRk—loaRk+1 Tt aLk—l
anLk Tt anLk-I—Lk—l — 050 Tt aRk—llaRk+1 Tt aLk—l
hold. Let ¢c:=nly+ Ry, —d and ¢ := mL; + Ry — d. Then, we have

. = oo = g, _q. By the eventual periodicity, this implies that

0= OnL+R;, = Ocepd = O

= O = O¢piyd = OpL 4R, = 17

which is a contradiction. Thus, « is not eventually periodic. O
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5 Irrational rotations having full maxi-
mal pattern complexity

In this section we show:

Theorem 5. For any irrational rotation 8, there exists a closed set S
in [0,1) such that pr(k) = 2% (k= 1,2,--+) for almost all z € [0,1)
with o = R(9, 5, x,Z).

Proof. Let ¢; (1 = 1,2,---) be a sequence of positive integers such
that 1 =: pg > p1 > p2 > -+ > 0 and > .7, pi/pi-1 < 1/4, where
pi := {q:0}, the fractional part of ¢;0 for i = 1,2,---. Let

So = {Zrim; ri €0, pici/pi—1)NZand r; 1 (i = 1,2,---)}

=1
and
Sl = [0, 1) \ So.
Then, it holds that Sy is a closed set in [0, 1) with

o0

ASo) > [T = 2pi/pic)

=1

> 1- 22,02'/,02'—1 >1/2,
=1

where A is the Lebesgue measure on [0, 1).
Let a(x) := R(0, So,z,Z) € {0, 1} for x € [0,1). Let k= 1,2,---.
Take any € = (&, &, -+ , &) € {0,1}*. Then, it holds that

k

Qe = [)(S, — {a:8}) D

=1

S T pi-1 C_ Ly, =222 (i< k)

12
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Therefore, it holds that

k 00
M) = [[ei/eies T (0 —20i/pim1)
=1 i=k+1

> pe(1= > 2pi/pica) > pe/2 > 0.
i=k+1

Hence, for almost all z € [0,1) and for all £ € [J;2,{0,1}", there
exists n € N such that {# + nf} € Q¢ by the ergodicity of the

irrational rotation. This implies that for almost all € [0, 1), any
k=1,2,--- and £ € {0,1}*, there exists n € N such that

O‘(x)n+q1+7(i) = i1 (l =0,1---,k— 1)7

where 7(1) := giy1—q1 (1 =0,1--- |k —1). Thus, we have pz(x)(k) =
28 (k=1,2,--+) for almost all z € [0, 1). O

6 Tribonacci word

In this section we show:

Theorem 6. Let 3 = [Bo3102- -+ be the tribonacci word, that is the
fized point of the Rauzy substitution (1.2) and a € {0,1} be such
that

an:{? Zg:iéorg (n € N). (6.1)

Then for k =1,2,3,---, we have
E+1 for k <8
Pa(k) { 2% —7  fork>8
palk) = 2~ (6.3)

(6.2)

Remark 2. The word a in Theorem 6 is also of the form o =
R(0,5,0,V) where 0 is a 2-dimensional irrational rotation, S a frac-
tal compact domain in R* (called the Rauzy fractal), and V a lattice
in R2.
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Let us define a sequence b = {b;; i =0,1,2,---} by
60:1, 61:2, 62:4
bn == bn_g + bn_g + bn—l (n == 3, 4, te ) (64)

For any n € N, there exists a unique admissible representation of n

in base b, that is
n = Z nzbz
=0

with the restriction that
nZE{O,l}, n2n2+1n2+2:0 (@:071727)
We thus define the ¢-th digit n, (i =0,1,2,---) of n € N in base b.

Lemma 3. For each n € N we have o, = ng, where ng is the 0-th
digit of n in base b.

Proof. Let 1(n) = noning -+ € {0,1} be the admissible represen-
tation of n € N and A := ¢(N) C {0,1}"". Note that the admissible
representation of n + 1 is the next element to that of n in the reverse

lexicographical order for any n € N. We define a mapping o from A
to AU A? by

(0n0n1n2 ety 1n0n1n2 s ) Nnoni € {00, 01, 10}
0n0n1n2 te Non1 = 11.

o(noning---) = {
Then, it holds that the sequence

U(¢(O))7 U(¢(1))7 U(¢(2))7 T

where if o(i)(n)) € A%, we put 2 elements Ongniny -+, Ingning---
in the place of o(1(n)) in the above, coincides with the sequence

¢(0)7 ¢(1)7 ¢(2)7 T

since both sequences begins in ¢(0) and at any place of the sequences,
the next element is determined as the next element in A in the reverse
lexicographical order.
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Let v € {1,2,3}" be such that

1 Ng = 0
Yo =94 2 nony =10 (n € N).
3 Non1 = 11

Then by the above argument, it follows that 7 is invariant under the
substitution (1.2). Since the fixed point of the substitution (1.2) is
unique, we have v = . Thus, we have a,, = ng (n € N). O

Proof of (6.3) in Theorem 6: Take any £k = 1,2, -- and define
a k-window 7 by 7(¢) = bsye; — by (1 = 0,1,--- ,k — 1), where the
sequence b is defined in (6.4). Take any & = (&, &, -+ &_1) € {0, 1}
Define n(¢) € N in term of the digits in base b as follows:

$(n(€)) = 001 0&1 001 061 -+ 06551 001 0&,_11 000 - - .

We prove that o,ey4p,4-6) = & (¢ = 0,1,--- & — 1) for any
¢ € {0,1}*, which implies that p*(k) = 2. For this purpose, it
is sufficient to prove that

(n(&) + bateio = &i- (6.5)

If & = 0, then since

446i

=
P(n(€) + &) = 001 0&1 --- 001011 -+ 001 06411 000-- - |

we have (n(&) 4 batei)o = 0 = &,.

If & =1, then we have non-admissible representation

4461

—~~
001 0&1 --- 001 021 --- 001 0&_11 000---

for n(€) +¢&;. Since 2b; =b;_5+b,41 (j =3,4,---) and 2by = by + bs,

15



we normalize the above non-admissible representation as follows:

4461

—~~
001 0&1 --- 0&_11 001 021 00---

4461

—~~
= 001 0&1 --- 0&_¢1 011 002 00---

4461

—~~
= 001 0&1 --- 0&-¢1 012 000 10---

4461

—~~
= 001 0&1 --- 0&-12 010 100 10---

4461

=
= 002 060 --- 1&_,0 110 100 10---

4461

PN
— 100 160 -+ 16,0 110 100 10--- .
Thus, we have (n(§) + bsyei)o = 1 = &, which proves (6.5) and

completes the proof.

Proof of (6.2) in Theorem 6: We introduce some notations and
definitions used here. A factor u € F(«) is called right special (resp.
left special) if there exists distinct a,b € A such that ua and ub (resp.
au and bu) are each in F(a). A word u which is both right special
and left special is called bispecial.

Given a word u = uguy - - - ux € F(a) set

Pref(u) = {uouy - - w0 <1 <k} U {e}

and
Suff(u) = {wwggy -+ w0 <1 < k}u{e}.
Given a finite subset {uM,u® ... w™M} C F(a) put
Pref(u™, @, ... u) = U Pref(u®)
1<k<n

and
Suff(u(l), u?, u(”)) = U Suff(u(k)).

1<k<n
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If v and v are non-empty words in F(«) we will write u = wv to
mean that for each word w € F(a) with |w| = |u|+]v]|, if u is a prefix
of w then w = wv. Similarly we will write vu 4 u to mean that for
each word w € F(a) with |w| = |u] + |v]|, if u is a suffix of w then
w = vu.

Let u, U € F(«). We say that U is a first return to u (in «) if Uu
is a factor of a having exactly two occurrences of w, one as a prefix
and one as a suffix.

It is readily verified that the three first returns to 11 in 3 are

o r; = 1121312
o o = 11213121312
o r3 = 1121312121312

Thus in «, blocks between consecutive occurrences of 00 are uniquely
decoded with respect to o. For instance, the factor 001010100 of «
is necessarily the image under o of the factor 112131211 of . Thus
any word u in « containing 00 can be uniquely decoded except for
possibly a short segment at the beginning and at the end of u; more
precisely:

Lemma 4. Let u be a factor of o containing 00 and let v and v’
be factors of B with o(v) = o(v') = u. Then we can write v = ras
and v' = r'zs’ where x € F(B), |r| = |r'], |s| = |s'], and r,v" €

Suff(1213,1312), and s,s' € Pref(2131,3121).

Proof. As mentioned above, blocks in u between consecutive occur-
rences of 00 are uniquely decoded with respect to o. Thus the only
possible ambiguities can occur preceding the first occurrence of 00
and following the last occurrence of 00. We can write v = vgllvy
and v = v{11v] such that v; and v} have no occurrences of 11. Then
|v1] = |vi]. Since r; F ri1 and r;1 is the longest common prefix of
ri1, ry and rs, if |v;] < 6, then vy = v} is a prefix (possibly empty)
of 213121. If |v1| > 7, then both vy and v} begin in 213121, and
we can write vy = 213121s and v} = 213121s’. Since ro F rol11 and
rs F rsll, it follows that s, s" € Pref(2131,3121). A similar argument
establishes that r, " € Suff(1213,1312). O

17



Remark 3. We remark that the assumption that uw contain an oc-
currence of 00 is necessary as for example the factors v = 121213121
and v = 121312131 of 3 map onto the same word v = 010101010

under o but do not satisfy the conclusion of the lemma.
Lemma 5. Let u € F(a) be a right special factor of o. Then either

Type 1 u = o(v) where v is the unique right special factor of 3 of
length |ul.

or

Type 2 u = o(v)1010 where v is the unique right special factor of 3
of length |u| — 4.

Moreover, if |u| < 3, then w is of Type 1, if 4 < |u| < 7, then u is
both of Type 1 and Type 2, while for each n > 8, a has exactly two
right special factors of length n, one of Type 1 and one of Type 2.

Proof. We first observe that if v is a right special factor of 3, then o(v)
is a right special factor of a. Moreover, since both v21312 and v31211
are factors of 3 applying o it follows that o(v)10101 and o(v)10100
are both factors of o whence o(v)1010 is also a right special factor of
a. In other words, all factors of « of Type 1 and of Type 2 are right
special.

It is readily verified, that for each n < 7, o has a unique right
special factor of length n which is either of Type 1 or of Type 2, or
both. On the other hand, for n > 8 a right special factor of Type 1
of length n will have 00101010 as a suffix, while a right special factor
of Type 2 of length n will have 10101010 as a suffix. Hence for n > 8,
a will have at least two right special factors of length n.

Thus it remains to show that if w is a right special factor of « of
length |u| > 8, then u is either of Type 1 or of Type 2. The result
is verified directly in case 8 < |u| < 13. Now suppose |u| > 14.
then v must contain an occurrence of 00. Since u0,ul € F(«) there
exist v,v’ € F(B) and a € {2,3} such that vl,v'a € F(8) and

u = o(v) = o(v'). Moreover we can write v = ras and v’ = r'zs’
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where € F(3), |r| = ||, |s| = ||, and r, 7" € Suff(1213,1312), and
s, € Pref(2131,3121).

Case 1. If v = v’ then v is a right special factor of § and hence u is
of Type 1.

Case 2. If v # v/ and s = &', then r # 1" and hence w = zs is
a bispecial factor of 3. We claim that 1w cannot be right special.
In fact, if 1w is right special, then wl is left special (since w is a
palindrome, and F(/3) is closed under mirror image), whence 2w +
2wl and 3w F 3wl which gives a contradiction since v'a either ends
in 2wa or in 3wa. If 2w is right special, then since |w| > 2 and w
in particular is left special, it follows that 2w begins in 212. But as
131212 4 212, we have 1312w - 2w and hence 1312w is also right
special. Since one of v or v’ is a suffix of 1312w, v or v is right
special, and again u is of Type 1. Finally, if 3w is right special, then
as 1213 4 3, it follows that 1213w = 3w and hence 1213w is right
special. Since one of v or v’ is a suffix of 1213w, v or v’ is right
special and so u is of Type 1.

Case 3. If v # v and s # &', then x is right special. We begin
by showing that in this case s,s" € {3121,2131}. Clearly either s
or s' begin in 3. If s begins in 3, then as sl € F(3) we have that
s € {3,312,3121}. But if s = 3 then s’ = 2, and if s = 312 then
s = 213 so in either case s’ F s'1. But this is impossible since s'a €
F(3). Hence if s begins in 3, then s = 3121 and s’ = 2131. On the
other hand, if s’ begins in 3, then since s'a € F(3) it follows that
s € {31,3121}. But if s’ = 31, then s = 21 and since |z| > 2,
it follows that = ends in 21 and hence vl ends in 21211 which is
a contradiction since 21211 ¢ F(3). Hence if s begins in 3 then
" =3121 and s = 2131.

Thus v,v" € {ra2131,rz3121,r'22131,r' 23121}, and hence u =
0(2)1010 for any choice of z € {ra,r’'z}. Now if r = r/, then rz is
right special; if » # r’/, then the same argument used in Case 2 shows
that either ra or 'z is right special. In either case, u will be a right
special factor of a of Type 2. This concludes the proof of the lemma.
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O

We now return to the proof of the theorem. It follows from the

previous lemma that for n < 7, « has a unique right special factor
of length n, while for n > 8, « has exactly two right special factors
of length n. Hence, p,(8) =9, and po(n + 1) — pa(n) = 2 for n > 8.
Hence, for n > 8, we have p,(n) = 2n + C. Setting n = 8 we find
C' = —7 as required.
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