Hankel determinants for the Fibonacci word and Padé approximation

Teturo KAMAЕ*Jun-ichi TAMURA†Zhi-Ying WEN‡§

1 Introduction

The aim of the paper is to give a concrete and interesting example of the Padé approximation theory as well as to develop the general theory so as to find a quantitative relation between the Hankel determinant and the Padé pair. Our example is the formal power series related to the Fibonacci word.

The Fibonacci word $\varepsilon(a,b)$ on an alphabet $\{a, b\}$ is the infinite sequence

$$\varepsilon(a, b) \equiv \hat{\varepsilon}_0\hat{\varepsilon}_1\cdots \hat{\varepsilon}_n\cdots := abaababaababab\cdots \quad (\hat{\varepsilon}_n \in \{a, b\})$$

which is the fixed point of the substitution

$$\sigma: \begin{align*}
a & \to ab \\
b & \to a
\end{align*}$$

*Osaka City University, Department of Mathematics, 558-8585 Japan / kamae@sci.osaka-cu.ac.jp
†International Junior College, Faculty of General Education, Ekoda 4-5-1, Nakano-ku, TOKYO, 165 Japan / tamura@rkmath.rikkyo.ac.jp
‡Tsinghua University, Department of Applied Mathematics, Beijing 430072 P. R. China / wenyiz@mail.tsinghua.edu.cn
§This research was partially supported by the Hatori Project of the Mathematical Society of Japan.
The **Hankel determinants** for an infinite word (or sequence) \(\varphi = \varphi_0 \varphi_1 \varphi_2 \cdots \) \((\varphi_n \in K)\) over a field \(K \) are the following

\[
H_{n,m}(\varphi) := \det(\varphi_{n+i+j})_{0 \leq i,j \leq m-1}
\]
\[(n = 0, 1, 2, \cdots; m = 1, 2, \cdots). \tag{3}\]

It is known [2] that the Hankel determinants play an important role in the theory of Padé approximation for the formal Laurent series

\[
\varphi(z) = \sum_{k=0}^{\infty} \varphi_k z^{-k-h}. \tag{4}\]

Let \(K((z^{-1})) \) be the set of formal Laurent series \(\varphi \) as above of \(z \) with coefficients in \(K \) and \(h \in \mathbb{Z} \) providing a non-Archimedean norm \(\| \varphi \| := \exp(-k_0 + h) \) with \(k_0 = \inf \{ k; \varphi_k \neq 0 \} \). Let \(\varphi \) be as above with \(h = -1 \). We say that a pair \((P, Q) \in K[z]^2\) of polynomials of \(z \) over \(K \) is a **Padé pair** of order \(m \) for \(\varphi \) if

\[
\| Q \varphi - P \| < \exp(-m), \quad Q \neq 0, \quad \deg Q \leq m. \tag{5}\]

A Padé pair \((P, Q)\) of order \(m \) for \(\varphi \) always exists and the rational function \(P/Q \in K(z) \) is uniquely determined for each \(m = 0, 1, 2, \cdots \). The element \(P/Q \in K(z) \) with \(P, Q \) satisfying (5) is called the \(m \)-th **diagonal Padé approximation** for \(\varphi \). A number \(m \) is called a normal index if (5) implies \(\deg Q = m \). Note that \(P/Q \) is irreducible if \(m \) is a normal index, although it can be reducible for a general \(m \). A normal Padé pair \((P, Q)\), i.e., \(\deg Q \) is a normal index, is said to be normalized if the leading coefficient of \(Q \) is equal to 1. It is a classical result that \(m \) is a normal index for \(\varphi \) if and only if the Hankel determinant \(\det(\varphi_{i+j})_{0 \leq i,j \leq m-1} \) is nonzero. Note that 0 is always a normal index and the determinant for the empty matrix is considered as 1, so that the above statement remains valid for \(m = 0 \).

We succeed in obtaining a quantitative relation between the Hankel determinant and the normalized Padé pair. Namely,

\[
\det(\varphi_{i+j})_{0 \leq i,j \leq m-1} = (-1)^{[m/2]} \prod_{z \in Q(z) = 0} P(z) \tag{6}\]

for any normal index \(m \) with the normalized Padé pair \((P, Q)\), where \(\prod_{z \in Q(z) = 0} \) indicates a product taken over all zeroes \(z \) of \(Q \) with their multiplicity (Theorem 6).
We are specially interested in the Padé approximation theory applied to the Fibonacci words $\varepsilon := \varepsilon(1, 0)$ and $\overline{\varepsilon} := \varepsilon(0, 1)$, where 0, 1 are considered as elements in the field \mathbb{Q}, since we have the following remark.

Remark 1 Let M be a matrix of size $m \times m$ with entries consisting of two independent variables a and b. Then, $\det M = (a - b)^{m-1}(pa + (-1)^{m-1}qb)$, where p and q are integers defined by

$$p = \det M \mid_{a=1, \, \overline{a}=0}, \quad q = \det M \mid_{a=0, \, \overline{a}=1}.$$

Proof of Remark 1. Subtracting the first column vector from all the other column vectors of M, we see that $\det M$ is divisible by $(a - b)^{m-1}$ as a polynomial in $\mathbb{Z}[a, b]$. Hence, $\det M = (a - b)^{m-1}(xa + yb)$ for integers x, y. Setting $(a, b) = (1, 0), \ (0, 1)$, we get the assertion.

In Section 2, we study the structures of the Fibonacci word, in particular, its repetition property. The notion of singular words introduced in Z.-X. Wen and Z.-Y. Wen [5] plays an important role.

In Section 3, we give the value of the Hankel determinants $H_{n,m}(\varepsilon)$ and $H_{n,m}(\overline{\varepsilon})$ for the Fibonacci words in some closed forms. It is a rare case where the Hankel determinants are determined completely. Another such case is for the Thue-Morse sequence φ consisting of 0 and 1, where the Hankel determinants $H_{m,n}(\varphi)$ modulo 2 are obtained, and the function $H_{m,n}(\varphi)$ of (m, n) is proved to be 2-dimensionally automatic (J.-P. Allouche, J. Peyrière, Z.-X. Wen and Z.-Y. Wen [1]).

In Section 4, we consider the self-similar property of the values $H_{n,m}(\varepsilon)$ and $H_{n,m}(\overline{\varepsilon})$ for the Fibonacci words. The quarter plane $\{(n, m); n \geq 0, m \geq 1\}$ is tiled by 3 kinds of tiles with the values $H_{n,m}(\varepsilon)$ and $H_{n,m}(\overline{\varepsilon})$ on it with various scales.

In Section 5, we develop a general theory of Padé approximation. We also obtain the admissible continued fraction expansion of φ_{ε} and $\varphi_{\overline{\varepsilon}}$, the formal Laurent series (4) with $h = -1$ for the sequences ε and $\overline{\varepsilon}$, and determine all the convergents p_k/q_k of the continued fractions. It is known in general that the set of the convergents p_k/q_k for φ is the set of diagonal Padé approximations and the set of degrees of q_k’s in ε coincides with the set of normal indices for φ.

3
2 Structures of the Fibonacci word

In what follows, σ denotes the substitution defined by (2), and

$$\hat{\varepsilon} = \hat{\varepsilon}_0\hat{\varepsilon}_1\hat{\varepsilon}_2\cdots \hat{\varepsilon}_n \cdots \quad (\hat{\varepsilon}_n \in \{a, b\})$$

is the (infinite) Fibonacci word (1). A finite word over $\{a, b\}$ is sometimes considered to be an element of the free group generated by a and b with their inverses a^{-1} and b^{-1}. For $n = 0, 1, 2, \cdots$, we define the n-th Fibonacci word F_n and the n-th singular word W_n as follows:

$$F_n := \sigma^n(a) = \sigma^{n+1}(b)$$
$$W_n := \beta_n F_n a_n^{-1},$$

(7)

where we put

$$\alpha_n = \beta_m = \begin{cases} a & (n : \text{even}, \ m : \text{odd}) \\ b & (n : \text{odd}, \ m : \text{even}), \end{cases}$$

(8)

and we define W_{-2} to be the empty word and $W_{-1} := a$ for convenience.

Let $(f_n; n \in \mathbb{Z})$ be the Fibonacci sequence:

$$f_{n+2} = f_{n+1} + f_n \quad (n \in \mathbb{Z})$$
$$f_{-1} = f_0 = 1.$$ \tag{9}

Then, we have $|F_n| = |W_n| = f_n \ (n \geq 0)$, where $|\xi|$ denotes the length of a finite word ξ.

For a finite word $\xi = \xi_0\xi_1\cdots\xi_{n-1}$ and a finite or infinite word $\eta = \eta_0\eta_1\eta_2\cdots$ over an alphabet, we denote

$$\xi \prec_k \eta$$

(10)

if $\xi = \eta_k\eta_{k+1}\cdots\eta_{k+n-1}$. We simply denote

$$\xi \prec \eta$$

(11)

and say that ξ is a subword of η if $\xi \prec_k \eta$ holds for some k. For a finite word $\xi = \xi_0\xi_1\cdots\xi_{n-1}$ and i with $0 \leq i < n$, we denote the i-th cyclic permutation of ξ by $C_i(\xi) := \xi_i\xi_{i+1}\cdots\xi_{n-1}\xi_0\xi_1\cdots\xi_{i-1}$. We also denote $C_i(\xi) := C_{i'}(\xi)$ with $i' := i - n[i/n]$ for any $i \in \mathbb{Z}$.

In this section, we study the structure of the Fibonacci word $\hat{\varepsilon}$ and discuss the repetition property. The following two lemmas are obtained by Z.-X. Wen and Z.-Y. Wen [5] and we omit the proofs.
Lemma 1 We have the following statements (1)-(10):
(1) $\hat{e} = F_n F_{n-1} F_n F_{n+1} F_{n+2} \cdots \ (n \geq 1)$,
(2) $F_n = F_{n-1} F_{n-2} = F_{n-2} F_{n-1}^{-1} \alpha_n^{-1} \beta \alpha_n \ (n \geq 2)$,
(3) $F_n F_n < \hat{e} \ (n \geq 3)$,
(4) $\hat{e} = W_{-1} W_0 W_1 W_2 W_3 \cdots$,
(5) $W_n = W_{n-2} W_{n-3} W_{n-2} \ (n \geq 1)$,
(6) W_n is a palindrome, that is, W_n stays invariant under reading the letters from the end \((n \geq -2)\),
(7) $C_i(F_n) < \hat{e} \ (n \geq 0, \ 0 \leq i < f_n)$,
(8) $C_i(F_n) \neq C_j(F_n)$ for any $i \neq j$, moreover, they are different already before their last places \((n \geq 1, \ 0 \leq i < f_n)\),
(9) $W_n \neq C_i(F_n) \ (n \geq 0, \ 0 \leq i < f_n)$,
(10) $\xi < \hat{e}$ and $|\xi| = f_n$ imply that either $\xi = C_i(F_n)$ for some i with $0 \leq i < f_n$ or $\xi = W_n \ (n \geq 0)$.

Lemma 2 For any $k \geq -1$, we have the decomposition of \hat{e} as follows:
$$\hat{e} = (W_{-1} W_0 \cdots W_{k-1}) W_k \gamma_0 W_k \gamma_1 \cdots W_k \gamma_n \cdots,$$
where all the occurrences of W_k in \hat{e} are picked up and γ_n is either W_{k+1} or W_{k-1} corresponding to \hat{e}_n is a or b, respectively. That is, any two different occurrences of W_k do not overlap and are separated by W_{k+1} or W_{k-1}.

We introduce another method to discuss the repetition property of \hat{e}. Let \mathbb{N} be the set of nonnegative integers. For $n \in \mathbb{N}$, let
$$n = \sum_{i=0}^{\infty} \tau_i(n) f_i,$$
$$\tau_i(n) \in \{0, 1\} \quad \text{and} \quad \tau_i(n) \tau_{i+1}(n) = 0 \ (i \in \mathbb{N}) \quad (12)$$
be the regular expression of n in the Fibonacci base due to Zeckendorf. For $m, n \in \mathbb{N}$ and a positive integer k, we denote
$$m \equiv_k n \quad (13)$$
if $\tau_i(m) = \tau_i(n)$ holds for all $i < k$.

Lemma 3 It holds that $\hat{e}_n = a$ if and only if $\tau_0(n) = 0$.

5
Proof. We use induction on n. The lemma holds for $n = 0, 1, 2$. Assume that the lemma holds for any $n \in \mathbb{N}$ with $n < f_k$ for some $k \geq 2$. Take any $n \in \mathbb{N}$ with $f_k \leq n < f_{k+1}$. Then, since $0 \leq n - f_k < f_{k-1}$, we have $n = \sum_{i=0}^{k-1} \tau_i(n - f_k) f_i + f_k$, which gives the regular expression if $\tau_{k-1}(n - f_k) = 0$. If $\tau_{k-1}(n - f_k) = 1$, then we have the regular expression $n = \sum_{i=0}^{k-2} \tau_i(n - f_k) f_i + f_{k+1}$. In any case, we have $\tau_0(n) = \tau_0(n - f_k)$. On the other hand, since \hat{e} starts with $F_k F_{k-1}$ by Lemma 1, we have $\hat{e}_n = \hat{e}_{n-f_k}$. Hence, $\hat{e}_n = a$ if and only if $\tau_0(n) = 0$ by the induction hypothesis. Thus, we have the lemma for any $n < f_{k+1}$, and by induction, we complete the proof. \hfill \blacksquare

Lemma 4 Let $n = \sum_{i=0}^{\infty} n_i f_i$ with $n_i \in \{0, 1\}$ ($i \in \mathbb{N}$). Assume that $n_i n_{i+1} = 0$ for $0 \leq i < k$. Then, $n_i = \tau_i(n)$ holds for $0 \leq i < k$.

Proof. If there exists $i \in \mathbb{N}$ such that $n_i n_{i+1} = 1$, take the maximum i_0 for such i's. Take the maximum j such that $n_{i_0+1} = n_{i_0+3} = n_{i_0+5} = \cdots = n_j = 1$. Then, replacing $f_{i_0} + f_{i_0+1} + f_{i_0+3} + f_{i_0+5} + \cdots + f_j$ by f_{j+1}, we have a new expression of n:

$$n = \sum_{i=0}^{\infty} n_i f_i$$

$$:= \sum_{i=0}^{i_0-1} n_i f_i + f_{j+1} + \sum_{i=j+3}^{\infty} n_i f_i.$$

This new expression is unchanged at the indices less than k, and is either regular or has a smaller maximum index i with the property $n_i' n_{i+1}' = 1$. By continuing this procedure, we finally get the regular expression of n, which is unchanged at the indices less than k from the original expression. Thus, we have $n_i = \tau_i(n)$ for any $0 \leq i < k$. \hfill \blacksquare

Lemma 5 For any $n \in \mathbb{N}$ and $k \geq 0$, $\tau_0(n + f_k) \neq \tau_0(n)$ holds if and only if either $n \equiv_{k+2} f_{k+1} - 2$ or $n \equiv_{k+2} f_{k+1} - 1$. Moreover,

$$\hat{e}_{n+f_k} - \hat{e}_n = \begin{cases} (-1)^{k-1}(a - b) & (n \equiv_{k+2} f_{k+1} - 2) \\ (-1)^k(a - b) & (n \equiv_{k+2} f_{k+1} - 1), \end{cases}$$

where a and b are considered as independent variables.

Proof. If $k = 0$, we can verify Lemma 5 by a direct calculation.
Assume that \(k \geq 1 \) and \(\tau_k(n) = 0 \), then we have an expression of \(n + f_k \):

\[
n + f_k = \sum_{i=0}^{k-1} \tau_i(n) f_i + f_k + \sum_{i=k+1}^{\infty} \tau_i(n) f_i.
\]

Then by Lemma 4, we have \(\tau_0(n + f_k) = \tau_0(n) \) if \(k \geq 2 \) or if \(k = 1 \) and \(\tau_0(n) = 0 \). In the case where \(k = 1 \), \(\tau_0(n) = 1 \) and \(\tau_2(n) = 0 \), since

\[
n + f_k = 1 + 2 + \sum_{i=3}^{\infty} \tau_i(n) f_i = f_2 + \sum_{i=3}^{\infty} \tau_i(n) f_i,
\]

we have \(\tau_0(n + f_k) = 0 \) by Lemma 4. On the other hand, in the case where \(k = 1 \), \(\tau_0(n) = 1 \) and \(\tau_2(n) = 1 \), since

\[
n + f_k = 1 + 2 + 3 + \sum_{i=4}^{\infty} \tau_i(n) f_i = f_0 + f_3 + \sum_{i=4}^{\infty} \tau_i(n) f_i,
\]

we have \(\tau_0(n + f_k) = 1 \) by Lemma 4.

Thus, in the case where \(k \geq 1 \) and \(\tau_k(n) = 0 \), \(\tau_0(n + f_k) \neq \tau_0(n) \) if and only if \(k = 1 \), \(\tau_0(n) = 1 \) and \(\tau_2(n) = 0 \), or equivalently, if and only if \(n \equiv k + 2 f_{k+1} - 2 \). Note that \(n \equiv k + 1 f_{k+1} - 1 \) does not happen in this case.

Now assume that \(k \geq 1 \) and \(\tau_k(n) = 1 \). Take the minimum \(j \geq 0 \) such that \(\tau_k(n) = \tau_{k-2}(n) = \tau_{k-4}(n) = \cdots = \tau_j(n) = 1 \). Then since \(2f_i = f_{i+1} + f_{i-2} \) for any \(i \in \mathbb{N} \), we have an expression of \(n + f_k \):

\[
n + f_k = \sum_{i=0}^{j-3} \tau_i(n) f_i + f_{j-2} + f_{j+1} + f_{j+3} + f_{j+5} + \cdots + f_{k+1} + \sum_{i=k+2}^{\infty} \tau_i(n) f_i,
\]

where the first term in the right-hand side vanishes if \(j = 0, 1, 2 \). Hence by Lemma 4, \(\tau_0(n + f_k) = \tau_0(n) \) if \(j \geq 4 \).

In the case where \(j = 3 \), \(\tau_0(n + f_k) = \tau_0(n) \) holds if \(\tau_0(n) = 0 \) by (14) and Lemma 4. If \(\tau_0(n) = 1 \), then by (14) and Lemma 4, \(\tau_0(n + f_k) = 0 \). Thus, in the case where \(j = 3 \), \(\tau_0(n + f_k) \neq \tau_0(n) \) if and only if \(\tau_0(n) = 1 \).

If \(j = 2 \), then by the assumption on \(j \), we have \(\tau_0(n) = 0 \). On the other hand, since \(f_0 = 1 \), by (14) and Lemma 4, we have \(\tau_0(n + f_k) = 1 \). Thus, \(\tau_0(n + f_k) \neq \tau_0(n) \).
If \(j = 1 \), then we have \(\tau_0(n) = 0 \) since \(\tau_1(n) = 1 \) by the assumption on \(j \). On the other hand, since \(f_{-1} = 1 \), we have \(\tau_0(n + f_k) = 1 \) by (14) and Lemma 4. Thus, \(\tau_0(n + f_k) \neq \tau_0(n) \).

If \(j = 0 \), then by the assumption on \(j \), \(\tau_0(n) = 1 \). On the other hand, since \(f_{-2} = 0 \), we have \(\tau_0(n + f_k) = 0 \) by (14) and Lemma 4. Thus, \(\tau_0(n + f_k) \neq \tau_0(n) \).

By combining all the results as above, we get the first part.

The second part follows from Lemma 3 and the fact that for any \(k \geq 0 \),

\[
f_{k+1} - 1 = f_k + f_{k-2} + \cdots + f_i
\]

with \(i = 0 \) if \(k \) is even and \(i = 1 \) if \(k \) is odd. Hence,

\[
\tau_0(f_{k+1} - 1) = \tau_0(f_{h+1} - 2) = \begin{cases} a & (k: \text{odd}, h: \text{even}) \\ b & (k: \text{even}, h: \text{odd}) \end{cases}
\]

Lemma 6

For any \(k \geq 0 \), \(W_k \prec_n \mathcal{E} \) if and only if \(n \equiv_{k+2} f_{k+1} - 1 \).

Proof. By Lemma 2, the smallest \(n \in \mathbb{N} \) such that \(W_k \prec_n \mathcal{E} \) is

\[
f_{-1} + f_0 + f_1 + \cdots + f_{k-1} = f_{k+1} - 1,
\]

which is the smallest \(n \in \mathbb{N} \) such that \(n \equiv_{k+2} f_{k+1} - 1 \). Let \(n_0 := f_{k+1} - 1 \).

Then, the regular expression of \(n_0 \) is

\[
n_0 = f_k + f_{k-2} + f_{k-4} + \cdots + f_d,
\]

where \(d = (1 - (-1)^k)/2 \). The next \(n \) with \(n \equiv_{k+2} n_0 \) is clearly

\[
n = f_{k+2} + f_k + f_{k-2} + \cdots + f_d,
\]

which is, by Lemma 2, the next \(n \) such that \(W_k \prec_n \mathcal{E} \) since \(f_k + f_{k+1} \) = \(f_{k+2} \).

For \(i = 1, 2, 3, \ldots \), let

\[
n_i = n_0 + \sum_{j=0}^{\infty} \tau_j(i) f_{k+2+j}.
\]
Then, it is easy to see that n_i is the i-th n after n_0 such that $n \equiv_{k+2} f_{k+1} - 1$. We prove by induction on i that n_i is the i-th n after n_0 such that $W_k \prec_n \hat{e}$. Assume that it is so for i. Then by Lemma 4, $W_k \gamma_i; W_k \prec_{n_i} \hat{e}$. Hence, the next n after n_i such that $W_k \prec_n \hat{e}$ is $n_i + f_k + |\gamma_i|$. Thus, we have

$$n_i + f_k + |\gamma_i| = n_i + f_k + f_{k+1}1_{\gamma_i=a} + f_{k-1}1_{\gamma_i=b} = n_i + f_{k+1}1_{\tau_0(i)=0} + f_{k+1}1_{\tau_0(i)=1} = n_{i+1},$$

which completes the proof.

Lemma 7 Let $k \geq 0$ and $n, i \in \mathbb{N}$ satisfy that $n \equiv_{k+1} i$.

1. If $0 \leq i < f_k$, then, $\tau_0(n+j) = \tau_0(i+j)$ holds for any $j = 0, 1, \cdots, f_{k+2} - i - 3$.
2. If $f_k \leq i < f_{k+1}$, then, $\tau_0(n+j) = \tau_0(i+j)$ holds for any $j = 0, 1, \cdots, f_{k+3} - i - 3$.

Proof. (1) We prove the lemma by induction on k. The assertion holds for $k = 0$. Let $k \geq 1$ and assume that the assertion is valid for $k - 1$. For $j = 0, 1, \cdots, f_k - i$, $n + j \equiv_k i + j$ holds and hence, $\tau_0(n+j) = \tau_0(i+j)$ holds. Let $j_0 = f_k - i$. Then, since $n + j_0 \equiv_k i + j_0 \equiv_k 0$, we have $\tau_0(n+j_0 + j) = \tau_0(i+j_0 + j) = \tau_0(j)$ for any $j = 0, 1, \cdots, f_{k+1} - 3$ by the induction hypothesis. Thus, $\tau_0(n+j) = \tau_0(i+j)$ holds for any $j = 0, 1, \cdots, f_{k+2} - i - 3$. This proves (1).

(2) In this case, $\tau_{k+1}(n) = 0$ holds. Hence, we have $n \equiv_{k+2} i$. Therefore, we can apply (1) with $k + 1$ for k. Thus, we get (2).

Let $n, m, i \in \mathbb{N}$ with $m \geq 2$ and $0 < i < m$. We call n an (m, i)-shift invariant place in \hat{e} if

$$\hat{e}_n \hat{e}_{n+1} \cdots \hat{e}_{n+m-1} = \hat{e}_{n+i} \hat{e}_{n+i+1} \cdots \hat{e}_{n+i+m-1}.$$

We call n an m-repetitive place in \hat{e} if there exist $i, j \in \mathbb{N}$ with $i > 0$ and $i + j < m$ such that $n + j$ is an (m, i)-shift invariant place in \hat{e}. Let \mathcal{R}_m be the set of m-repetitive places in \hat{e}.
Lemma 8 (1) Let \(n \equiv_{k+1} 0 \) for some \(k \geq 1 \). Then, \(n \) is an \((f_{k+1} - 2, f_k)\)-shift invariant place in \(\hat{\mathcal{E}} \).
(2) Let \(n \equiv_{k+1} f_k \) for some \(k \geq 2 \). Then, \(n \) is an \((f_{k+1} - 2, f_{k-1})\)-shift invariant place in \(\hat{\mathcal{E}} \).

Proof. (1) Since the least \(i \geq n \) such that either \(i \equiv_{k+2} f_{k+1} - 1 \) or \(i \equiv_{k+2} f_{k+1} - 2 \) is not less than \(n + f_{k+1} - 2 \), by Lemma 5, we have

\[
\hat{\mathcal{E}}_n \hat{\mathcal{E}}_{n+1} \cdots \hat{\mathcal{E}}_{n+f_{k+1}-3} = \hat{\mathcal{E}}_{n+f_k} \hat{\mathcal{E}}_{n+f_k+1} \cdots \hat{\mathcal{E}}_{n+f_k+f_{k+1}-3}.
\]

(2) Since the minimum \(i \geq n \) such that either \(i \equiv_{k+1} f_k - 1 \) or \(i \equiv_{k+1} f_k - 2 \) is \(n + f_{k+1} - 2 \), by Lemma 5, we have

\[
\hat{\mathcal{E}}_n \hat{\mathcal{E}}_{n+1} \cdots \hat{\mathcal{E}}_{n+f_{k+1}-3} = \hat{\mathcal{E}}_{n+f_{k-1}} \hat{\mathcal{E}}_{n+f_{k-1}+1} \cdots \hat{\mathcal{E}}_{n+f_{k-1}+f_{k+1}-3}.
\]

\(\square \)

Theorem 1 The pair \((n, m)\) of nonnegative integers satisfies \(n \in \mathcal{R}_m \) if one of the following two conditions holds:
(1) \(f_{k+1} - 1 \leq m \leq f_{k+1} - 2 \), \(n - i \equiv_{k+1} 0 \) and \(i \leq n \) for some \(k \geq 1 \) and \(i \in \mathbb{Z} \) with \(f_k + 1 \leq m + i \leq f_{k+1} - 2 \).
(2) \(f_{k-1} + 1 \leq m \leq f_{k+1} - 2 \), \(i \leq n \) and \(n - i \equiv_{k+1} f_k \) for some \(k \geq 2 \) and \(i \in \mathbb{Z} \) with \(f_{k-1} + 1 \leq m + i \leq f_{k+1} - 2 \).

Remark 2 The “if and only if” statement actually holds in Theorem 1 in place of “if” since we will prove later that \(H_{n,m} \neq 0 \) if none of the conditions (1) and (2) hold.

Proof of Theorem 1. Assume (1) and \(i \geq 0 \). By (1) of Lemma 8, \(n - i \) is an \((f_{k+1} - 2, f_k)\)-shift invariant place. Then, \(n \) is an \((m, f_k)\)-shift invariant place since \(i + m \leq f_{k+1} - 2 \). Thus, \(n \in \mathcal{R}_m \) as \(f_k < m \).

Assume (1) and \(i < 0 \). Then, since \(n - i \) is an \((f_{k+1} - 2, f_k)\)-shift invariant place and \(m \leq f_{k+2} - 2 \), it is an \((m, f_k)\)-shift invariant place. Moreover, since \(f_k - i < m \), \(n \) is a \(m \)-repetitive place.

Assume (2) and \(i \geq 0 \). Then, \(n - i \) is an \((f_{k+1} - 2, f_{k-1})\)-shift invariant place by (2) of Lemma 8. Then, \(n \) is an \((m, f_{k-1})\)-shift invariance place since \(i + m \leq f_{k+1} - 2 \). Thus, \(n \) is an \(m \)-repetitive place as \(f_{k-1} < m \).

Assume (2) and \(i < 0 \). Then, since \(n - i \) is an \((f_{k+1} - 2, f_{k-1})\)-shift invariant place and \(m \leq f_{k+1} - 2 \), it is an \((m, f_{k-1})\)-shift invariant place. Then, \(n \) is an \(m \)-repetitive place, since \(f_{k-1} - i < m \). Thus, \(n \in \mathcal{R}_m \). \(\square \)
Corollary 1 The place 0 is m-repetitive for an $m \geq 2$ if $m \not\in \cup_{k=1}^{\infty} \{f_k - 1, f_k\}$.

Remark 3 The “if and only if” statement actually holds in Corollary 1 in place of “if” since we will prove later that $H_{0,m} \neq 0$ if $m \in \cup_{k=1}^{\infty} \{f_k - 1, f_k\}$.

Proof of Corollary 1. Let $i = 0$ in (1) of Theorem 1. Then, 0 is m-repetitive if $f_k + 1 \leq m \leq f_{k+1} - 2$ for some $k \geq 1$.

Corollary 2 Let $k \geq 2$. The place n is f_k-repetitive if

$$W_k \prec \hat{\varepsilon}_{n+1} \hat{\varepsilon}_{n+2} \cdots \hat{\varepsilon}_{n+2f_k-3}.$$

Proof. By (2) of Theorem 1, for any $k \geq 2$, n is an f_k-repetitive place if $n - i \equiv_{k+1} f_k$ for some i with $i \leq n$ and $-f_{k-2} + 1 \leq i \leq f_{k-1} - 2$. Since the condition $n - i \equiv_{k+1} f_k$ is equivalent to $n - i \equiv_{k+2} f_k$ and there is no carry in addition of $-i$ to both sides of $n \equiv_{k+2} f_k + i$, the condition $n - i \equiv_{k+1} f_k$ is equivalent to $n \equiv_{k+2} f_k + i$. Hence, the place n is f_k-repetitive if $n \equiv_{k+2} j$ for some j with $f_{k-1} + 1 \leq j \leq f_{k+1} - 2$. By Lemma 6, this condition is equivalent to that W_k starts at one of the places in $\{n+1, n+2, \cdots, f_k - 2\}$, which completes the proof.

3 Hankel determinants

The aim of this section is to find the value of the Hankel determinants

$$H_{n,m} := H_{n,m}(\varepsilon) = \det(\varepsilon_{n+i+j})_{0 \leq i, j \leq m-1}$$

$$\overline{H}_{n,m} := H_{n,m}(\overline{\varepsilon}) = \det(\overline{\varepsilon}_{n+i+j})_{0 \leq i, j \leq m-1}$$

\hspace{.5cm} \hspace{.5cm} (n = 0, 1, 2, \cdots; \hspace{.1cm} m = 1, 2, 3, \cdots)

for the Fibonacci word $\varepsilon(a, b)$ at $(a, b) = (1, 0)$ and $(a, b) = (0, 1)$:

$$\varepsilon := \varepsilon(1, 0) = 10110101101101 \cdots,$$

$$\overline{\varepsilon} := \varepsilon(0, 1) = 01001010010010 \cdots.$$

It is clear that $H_{n,m}(\varepsilon(a, b)) = 0$ if n is the m-repetitive place in $\varepsilon(a, b)$, where a, b are considered to be two independent variables, so that, in general, $H_{n,m}(\varepsilon(a, b))$ becomes a polynomial in a and b as is stated in Remark 1.

11
In the following lemmas, theorems and corollary, we give statements for \(\varepsilon \) and \(\overline{\varepsilon} \) parallely, while we give the proofs only for \(\varepsilon \) since the proofs for \(\overline{\varepsilon} \) are similar to those for \(\varepsilon \). The only difference between them is the starting point, Lemma 5, where \(a - b \) in the right-hand side is 1 for \(\varepsilon \) and \(-1\) for \(\overline{\varepsilon} \).

We use the following notation: for any subset \(S \) of \(\{0, 1, 2, 3, 4, 5\} \), \(\chi(k : S) \) is a function on \(k \in \mathbb{Z} \) such that

\[
\chi(k : S) = \begin{cases}
-1 & \text{(if } k \equiv s \pmod{6} \text{ for some } s \in S) \\
1 & \text{(otherwise).}
\end{cases}
\]

The following corollary follows from Theorem 1.

Corollary 3 \(H_{n,m} = 0 \) if one of the conditions (1), (2) in Theorem 1 is satisfied. The same statement holds for \(\overline{\Pi}_{n,m} \).

Lemma 9 For any \(k \geq 2 \), we have

\[
H_{0,f_k} = \chi(k : 2, 3) \left(H_{0,f_{k-1}} - (-1)^{f_k-1} H_{f_{k-1}, f_{k-1}} \right)
\]

\[
\overline{\Pi}_{0,f_k} = \chi(k : 1, 3, 4, 5) \left(\overline{\Pi}_{0,f_{k-1}} - (-1)^{f_k-1} \overline{\Pi}_{f_{k-1}, f_{k-1}} \right).
\]

Proof. The matrix \((\varepsilon_{i,j})_{0\leq i,j<f_k}\) is decomposed into three parts:

\[
(\varepsilon_{i,j})_{0\leq i,j<f_k} = \begin{pmatrix} A \\ A' \\ B \end{pmatrix},
\]

where

\[
A = (\varepsilon_{i,j})_{0\leq i<j<f_k, 0\leq i<j\leq f_k},
\]

\[
A' = (\varepsilon_{f_k-i+j, j})_{0\leq i<j<f_k, 0\leq i<j\leq f_k},
\]

\[
B = (\varepsilon_{i+j, f_k-i})_{0\leq i<j<f_k, 0\leq i<j\leq f_k}.
\]

By Lemma 5, the following two subwords of \(\varepsilon \):

\[
\varepsilon_0 \varepsilon_1 \cdots \varepsilon_{f_k-2} \quad \text{and} \quad \varepsilon_{f_k-3} \varepsilon_{f_k-2+1} \cdots \varepsilon_{f_k-1} \varepsilon_{f_k-2} \varepsilon_{f_k-2} \varepsilon_{f_k-2+1} \varepsilon_{f_k-1} \varepsilon_{f_k-2} \varepsilon_{f_k-2+1} \varepsilon_{f_k-1} \varepsilon_{f_k-2} \varepsilon_{f_k-2+1} \varepsilon_{f_k-1} \varepsilon_{f_k-2}
\]

differ only at two places, namely, \(\varepsilon_{f_k-2} \neq \varepsilon_{f_k-1} \varepsilon_{f_k-2} \) and \(\varepsilon_{f_k-1} \neq \varepsilon_{f_k-1} \varepsilon_{f_k-2} \). Thus, we get

\[
B - A = \begin{pmatrix} 0 & (-1)^k & \ldots & (-1)^{k-2} \\ (-1)^k & (-1)^{k-1} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{k-2} & (-1)^{k-1} & \ldots & 0 \end{pmatrix}.
\]
Let $A_0, A_1, \ldots, A_{f_k-1}$ be the columns of the matrix $\begin{pmatrix} A \\ A' \end{pmatrix}$ in order from the left. Since

$$
(A_0 A_1 \cdots A_{f_k-2}) = (\epsilon_{i+j})_{0 \leq i < f_{k-1}, 0 \leq j < f_{k-2} + 1} \\
(A_{f_{k-1}} A_{f_{k-1}+1} \cdots A_{f_k-2}) = (\epsilon_{f_{k-1}+i+j})_{0 \leq i < f_{k-1}, 0 \leq j < f_{k-2} + 1}
$$

and

$$
\epsilon_0 \epsilon_1 \cdots \epsilon_{f_k - 2} + \epsilon_1 \epsilon_{f_k - 3} = \epsilon_{f_{k-1}} \epsilon_{f_{k-1}+1} \cdots \epsilon_{f_{k-1}+f_{k-2}} \epsilon_{f_{k-3} + 3}
$$

by Lemma 5, we get

$$
(A_0 A_1 \cdots A_{f_k-2}) = (A_{f_{k-1}} A_{f_{k-1}+1} \cdots A_{f_k-2}). \quad (16)
$$

Thus, from (15) and (16) we obtain

$$
H_{0, f_k} = \det \begin{pmatrix}
A_0 & \cdots & A_{f_{k-1}} & \cdots & A_{f_k-2} & A_{f_k-1} \\
& & & & (-1)^k & (-1)^{k-1} \\
0 & \cdots & & & (-1)^k & (-1)^{k-1} \\
& & & & 0 & \\
(-1)^k & (-1)^{k-1} & & & 0 \\
& & & & & \\
\end{pmatrix}
$$

$$
= \det \begin{pmatrix}
A_0 & \cdots & A_{f_{k-1}} & 0 & \cdots & 0 & A_{f_k-1} \\
& & & & (-1)^k & (-1)^{k-1} & \cdots & \\
0 & \cdots & & & (-1)^k & (-1)^{k-1} \\
& & & & 0 & \cdots & & \\
(-1)^k & (-1)^{k-1} & & & 0 \\
& & & & & & & \\
\end{pmatrix}
$$

$$
= (-1)^{(k-1)f_{k-2}} (-1)^{\left[\frac{f_{k-2}}{2} \right]} \det(A_0 A_1 \cdots A_{f_{k-1}-1}) \\
+ (-1)^k_{f_{k-2}} (-1)^{\left[\frac{f_{k-2}}{2} \right] + f_{k-1}} \det(A_{f_k-1} A_0 A_1 \cdots A_{f_{k-1}-2}).
$$

Since

$$
\epsilon_0 \epsilon_1 \cdots \epsilon_{2f_{k-1}} - 3 = \epsilon_{f_k} \epsilon_{f_k + 1} \cdots \epsilon_{f_k + 2f_{k-1} - 3}
$$
by Lemma 5, we get
\[
\det(A_{f_k-1}A_0A_1 \cdots A_{f_k-2}) = \det(\varepsilon_{f_k-1+i+j})_{0 \leq i,j < f_k} = H_{f_k-1,f_{k-1}}.
\]
Thus we get
\[
H_{0,f_k} = (-1)^{k-1}f_k - 2((-1)^{\frac{k-2}{2}}) H_{0,f_{k-1}} + (-1)^{k-2}((-1)^{\frac{k-1}{2}}) f_k \cdot H_{f_k-1,f_{k-1}}
\]
\[
= \chi(k : 2, 3) \left(H_{0,f_{k-1}} - (-1)^{f_k-1} H_{f_k-1,f_{k-1}} \right),
\]
where we have used the fact that
\[
(-1)^{k-1}f_k - 2((-1)^{\frac{k-2}{2}}) = \chi(k : 2, 3).
\]

\begin{lemma}
For \(k \geq 2 \), we have
\[
H_{f_{k+1}-1,f_k} = \chi(k : 1, 3, 4, 5) H_{f_{k+1}-1,f_{k-1}}
\]
\[
\overline{P}_{f_{k+1}-1,f_k} = \chi(k : 2, 3) \overline{P}_{f_{k+1}-1,f_{k-1}}
\]

\textbf{Proof.} Just like the proof of Lemma 9, we decompose the matrix \((\varepsilon_{f_{k+1}-1+i+j})_{0 \leq i,j < f_k}\) into three parts:
\[
(\varepsilon_{f_{k+1}-1+i+j})_{0 \leq i,j < f_k} = \begin{pmatrix} A & A' \\ A' & B \end{pmatrix},
\]
where
\[
A = (\varepsilon_{f_{k+1}-1+i+j})_{0 \leq i < f_{k-2}, 0 \leq j < f_k}
\]
\[
A' = (\varepsilon_{f_{k+1}-1+f_{k-2}+i+j})_{0 \leq i < f_{k-3}, 0 \leq j < f_k}
\]
\[
B = (\varepsilon_{f_{k+1}-1+f_{k-1}+i+j})_{0 \leq i < f_{k-2}, 0 \leq j < f_k}.
\]
By Lemma 5, the following two subwords of \(\varepsilon \):
\[
\varepsilon_{f_{k+1}-1} \varepsilon_{f_{k+1}} \cdots \varepsilon_{f_{k+1}+f_{k-2}+f_k-3} \quad \text{and} \quad
\varepsilon_{f_{k+1}-1+f_{k-1}} \varepsilon_{f_{k+1}+f_{k-1}} \cdots \varepsilon_{f_{k+1}+f_{k-1}+f_{k-2}+f_k-3}
\]

differ only at two places. Namely, \(\varepsilon \in f_{k+1} + f_k - 2 \neq \varepsilon \in f_{k+1} + f_{k-1} + f_k - 2 \) and \(\varepsilon \in f_{k+1} + f_{k-1} \neq \varepsilon \in f_{k+1} + f_{k-1} + f_k - 1 \). Therefore, we get

\[
B - A = \begin{pmatrix}
0 & (1)^k & (1)^k & \\
& \ldots & \ldots & \\
& & (1)^k & (1)^k - 1 \\
& & & \ldots \\
(1)^k & (1)^k - 1 & & 0
\end{pmatrix}.
\]

Thus, we have

\[
\det(\varepsilon \in f_{k+1} + i + j)_{0 \leq i, j < f_k} = \det(\begin{pmatrix} \ldots & A_{f_{k-1}} & A_{f_k} & \ldots & A_{f_k - 2} & A_{f_k - 1} \\ & \ldots & \ldots & \ldots & \ldots & \ldots \\ & 0 & \ldots & \ldots & \ldots & \ldots \\ & \ldots & \ldots & \ldots & \ldots & \ldots \\ & (1)^k & (1)^k - 1 & & \ldots \\
\end{pmatrix}) = (-1)^k f_k - 2 (1)^\left[\frac{f_k - 2}{2}\right] \det(A_0 A_1 \cdots A_{f_{k-1} - 1})
\]

\[
= \chi(k : 1, 3, 4, 5) H_{f_{k+1} - 1, f_{k-1}},
\]

which completes the proof for \(H_{f_{k+1} - 1, f_{k-1}} \).

\section*{Lemma 11}

For any \(k \geq 2 \), we have

\[
H_{f_{k+1} - 1, f_{k-1}} = \chi(k : 2, 5) H_{0, f_{k-1}},
\]

\[
H_{f_{k+1} - 1, f_{k-1}} = \chi(k : 2, 5) H_{0, f_{k-1}}.
\]

\section*{Proof}

Since by Lemma 5,

\[
\varepsilon \in f_{k+1} + i + j + i \in f_{k+1} + f_{k-1} - 2 = \varepsilon \in f_{k+1} + f_{k-1} + f_{k+1} + f_{k-1} - 1 - 2 \\
\]

\[
\varepsilon \in f_{k+1} + f_{k-1} + f_{k+1} + f_{k-1} - 2, \]

\[
\varepsilon \in f_{k+1} + f_{k-1} + f_{k+1} + f_{k-1} - 2.
\]
we get
\[
(\varepsilon_{f_{k+1}-1+i+j})_{0 \leq i, j < f_{k-1}} = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
& & \ddots \\
0 & & \end{pmatrix}
\begin{pmatrix}
\varepsilon_{f_{k+1}+i+j})_{0 \leq i, j < f_{k-1}}.
\end{pmatrix}
\]

Also, by Lemma 5,
\[
(\varepsilon_{f_{k+1}+i+j})_{0 \leq i, j < f_k} = (\varepsilon_{i+j})_{0 \leq i, j < f_k}.
\]

Thus we obtain
\[
H_{f_{k+1}-1, f_{k-1}} = \det(\varepsilon_{f_{k+1}-1+i+j})_{0 \leq i, j < f_{k-1}}
\]
\[
= (-1)^{f_{k-1}-1} \det(\varepsilon_{f_{k+1}+i+j})_{0 \leq i, j < f_{k-1}}
\]
\[
= \chi(k: 2, 5) H_{0, f_{k-1}},
\]
which completes the proof.

Lemma 12 For any \(k \geq 3 \), we have
\[
H_{0, f_k} = \chi(k: 2, 3) H_{0, f_{k-1}} + \chi(k: 2, 4) H_{0, f_{k-2}}
\]
\[
\mathcal{P}_{0, f_k} = \chi(k: 1, 3, 4, 5) \mathcal{P}_{0, f_{k-1}} + \chi(k: 0, 1, 2, 3) \mathcal{P}_{0, f_{k-2}}.
\]

Proof. Clear from Lemmas 9–11.

Lemma 13 For any \(k \geq 0 \), we have
\[
H_{0, f_k} = \chi(k: 2) f_{k-1}
\]
\[
\mathcal{P}_{0, f_k} = \chi(k: 1, 2, 4) f_{k-2}
\]

Proof. It holds that
\[
H_{0, f_0} = 1, \quad H_{0, f_1} = 1, \quad H_{0, f_2} = -2
\]
\[
\mathcal{P}_{0, f_0} = 0, \quad \mathcal{P}_{0, f_1} = -1, \quad \mathcal{P}_{0, f_2} = -1.
\]
Thus, the lemma holds for \(k = 0, 1, 2 \). For \(k \geq 3 \), we can prove it by induction on \(k \) using Lemma 12.

16
Lemma 14 For any $k \geq 1$, we have

\[
\begin{align*}
H_{0,f_k-1} &= \chi(k : 0, 4)f_{k-2} \\
\mathbf{T}_{0,f_k-1} &= \chi(k : 2, 3, 4, 5)f_{k-3}.
\end{align*}
\]

Proof. Since the matrix $(\varepsilon_{i+j})_{0 \leq i,j \leq f_k-1}$ is obtained from the matrix $(\varepsilon_{i+j})_{0 \leq i,j \leq f_k}$ by removing the last row and the last column, for any $k \geq 2$ we have by (17),

\[
H_{0,f_k-1} = \det \left(\begin{array}{cccccc}
A_0 & A_1 & \cdots & A_{f_k-2} & 0 & 0 \\
0 & \cdots & 0 & (-1)^k & 0 \\
& \cdots & & (-1)^k & 0 \\
& & & (-1)^k & 0
\end{array} \right)
\]

\[
= (-1)^{k(f_k-2-1)}(-1)^\left[\frac{f_k-2-1}{2} \right] \det(A_0A_1\cdots A_{f_k-2})
\]

Hence, in view of Lemma 13, we obtain the formula for H_{0,f_k-1}. \qed

Theorem 2 For any $m, k \geq 1$ with $f_{k-1} < m \leq f_k$ and $n \in \mathbb{N}$ with $n \equiv k+1 \ 0$, we have

\[
H_{n,m} = \begin{cases}
\chi(k : 2)f_{k-1} & (\text{if } m = f_k) \\
\chi(k : 0, 4)f_{k-2} & (\text{if } m = f_k - 1) \\
0 & (\text{otherwise})
\end{cases}
\]

\[
\mathbf{T}_{n,m} = \begin{cases}
\chi(k : 1, 2, 4)f_{k-2} & (\text{if } m = f_k) \\
\chi(k : 2, 3, 4, 5)f_{k-3} & (\text{if } m = f_k - 1) \\
0 & (\text{otherwise})
\end{cases}
\]

Proof. By Lemma 3 and 7, the matrix for $H_{n,m}$ coincides with that for $H_{0,m}$ so that $H_{n,m} = H_{0,m}$. Then, the first two cases follow from Lemma 13.
and 14. For the last case, by Corollary 1, there exist two identical rows in the matrix $(\varepsilon_{i+j})_{0 \leq i,j < m}$, so that $H_{0,m} = 0$.

Theorem 3 For any $k, n, i \in \mathbb{N}$ with $n \equiv_{k+1} i$ and $0 \leq i < f_{k+1} - 1$, we have

\[
H_{n,f_k} = \begin{cases}
\chi(k : 2)\chi(k : 1, 4)^i f_{k-1} \\
\quad \left(\begin{array}{l}
\text{if either } \tau_{k+1}(n) = 0 \text{ and } 0 \leq i < f_{k-1} \\
\quad \text{or } \tau_{k+1}(n) = 1 \text{ and } 0 \leq i < f_k
\end{array} \right) \\
\chi(k : 1, 2, 4)f_{k-2} \\
\quad \left(\begin{array}{l}
\text{if either } \tau_{k+1}(n) = 0 \text{ and } i = f_{k-1} \\
\quad \text{or } i = f_{k+1} - 1
\end{array} \right) \\
0 \quad (\text{otherwise})
\end{cases}
\]

\[
\Pi_{n,f_k} = \begin{cases}
\chi(k : 1, 2, 4)\chi(k : 1, 4)^i f_{k-2} \\
\quad \left(\begin{array}{l}
\text{if either } \tau_{k+1}(n) = 0 \text{ and } 0 \leq i < f_{k-1} \\
\quad \text{or } \tau_{k+1}(n) = 1 \text{ and } 0 \leq i < f_k
\end{array} \right) \\
\chi(k : 2)f_{k-3} \\
\quad \left(\begin{array}{l}
\text{if either } \tau_{k+1}(n) = 0 \text{ and } i = f_{k-1} \\
\quad \text{or } i = f_{k+1} - 1
\end{array} \right) \\
0 \quad (\text{otherwise}).
\end{cases}
\]

Proof. The theorem holds for $k = 0$. Let $k \geq 1$.

Assume that either $\tau_{k+1}(n) = 0$ and $0 \leq i < f_{k-1}$ or $\tau_{k+1}(n) = 1$ and $0 \leq i < f_k$. Then we have by Lemma 3 and 7

\[
\varepsilon_{i+j} = \varepsilon_{n+j} \quad (j = 0, 1, \ldots, f_k - i - 1) \\
\varepsilon_{i+j-f_k} = \varepsilon_{n+j} \quad (j = f_k - i, f_k, \ldots, 2f_k - 2) \\
\varepsilon_j = \varepsilon_{j+f_k} \quad (j = 0, 1, \ldots, f_k - 1).
\]

Hence, the columns of the matrix $(\varepsilon_{n+h+j})_{0 \leq h,j \leq f_k}$ coincide with those of the matrix $(\varepsilon_{h+j})_{0 \leq h,j \leq f_k}$. The j-th column of the former is the $(i+j)(mod f_k)$-th column of the latter for $j = 0, \ldots, f_k - 1$. Therefore, we get $H_{n,f_k} = (-1)^{i(f_k-i)}H_{0,f_k}$, which leads to the first case of our theorem by Theorem 2.
Assume that \(i = f_{k+1} - 1 \). Then we have \(H_{n,f_k} = H_{f_{k+1} - 1,f_k} \) by Lemmas 3 and 7. Thus, by Lemmas 10–12 we get

\[
H_{n,f_k} = \chi(k : 1, 2, 4)f_k.
\]

Assume that \(\tau_{k+1}(n) = 0 \) and \(i = f_{k-1} \). Then, since \(n \equiv_{k+2} i \), we have \(H_{n,f_k} = H_{f_k-1,f_k} \) by Lemmas 3 and 7. By Lemma 1,

\[
\xi := \varepsilon_{f_k-1}\varepsilon_{f_k+1}^1 \varepsilon_{f_k-3}^1 W_{k-2}W_{k-1}W_kW_{k-1}W_{k-2},
\]

\[
\eta := \varepsilon_{f_k+1}^1 \varepsilon_{f_k+1}^1 \varepsilon_{f_k+1}^1 \varepsilon_{f_k-2}^1 \varepsilon_{f_k-2}^1 W_{k-2}W_{k-1}W_kW_{k-1}W_{k-2}
\]

holds. Since the last letter of \(\eta \) comes one letter before the last letter of the palindrome word \(W_{k-2}W_{k-1}W_kW_{k-1}W_{k-2} \). Hence, \(\xi \) is the mirror image of \(\eta \), so that

\[
(\varepsilon_{f_k+i+j})_{0 \leq i, j < f_k} = \\
\begin{pmatrix}
0 & 1 & 0 \\
\vdots & \ddots & \vdots \\
1 & 0 & 0
\end{pmatrix}
(\varepsilon_{f_k+i+j})_{0 \leq i, j < f_k} \\
\begin{pmatrix}
0 & 1 & 0 \\
\vdots & \ddots & \vdots \\
1 & 0 & 0
\end{pmatrix}.
\]

Thus, we obtain \(H_{f_{k-1},f_k} = H_{f_{k+1} - 1,f_k} \) and

\[
H_{n,f_k} = \chi(k : 1, 2, 4)f_k.
\]

Assume that \(n \) does not belong to the above two cases. Then, since \(\tau_{k+1}(n) = 1 \) implies \(i < f_k \), we have the following condition:

\[
\tau_{k+1}(n) = 0 \text{ and } f_k - 1 + 1 \leq i \leq f_{k+1} - 2.
\]

This condition is nonempty only if \(k \geq 2 \), which we assume. Then, the condition (2) of Theorem 1 is satisfied with \(f_k \) (resp. \(i - f_k \)) in place of \(m \) (resp. \(i \)). Thus, by Corollary 3, \(H_{n,f_k} = 0 \).

\[\blacksquare \]
Lemma 15 For any \(k, n, i \in \mathbb{N} \) with \(k \geq 1 \) and \(n \equiv_{k+1} i \), assume that either \(\tau_{k+1}(n) = 0 \) and \(0 \leq i < f_{k-1} \) or \(\tau_{k+1}(n) = 1 \) and \(0 \leq i < f_k \). Then we have

\[
H_{n, f_{k-1}} = \begin{cases}
\chi(k : 0, 4) f_{k-2} & (i = 0) \\
\chi(k : 2, 3) \chi(k : 1, 2, 4, 5)^i H_{i+f_k, f_{k-1}-1} + \chi(k : 1, 2, 3, 5) \chi(k : 1, 4)^i f_{k-2} & (0 < i \leq f_{k-2}) \\
\chi(k : 2, 3) \chi(k : 1, 2, 4, 5)^i H_{i+f_k, f_{k-1}-1} & (f_{k-2} < i \leq f_{k-1}) \\
\chi(k : 0, 4) \chi(k : 1, 4)^i f_{k-2} & (f_{k-1} < i < f_k)
\end{cases}
\]

\[
\prod_{n, f_{k-1}} = \begin{cases}
\chi(k : 2, 3, 4, 5) f_{k-3} & (i = 0) \\
\chi(k : 1, 3, 4, 5) \chi(k : 1, 2, 4, 5)^i \prod_{i+f_k, f_{k-1}-1} + \chi(k : 0, 1) \chi(k : 1, 4)^i f_{k-3} & (0 < i \leq f_{k-2}) \\
\chi(k : 1, 3, 4, 5) \chi(k : 1, 2, 4, 5)^i \prod_{i+f_k, f_{k-1}-1} & (f_{k-2} < i \leq f_{k-1}) \\
\chi(k : 2, 3, 4, 5) \chi(k : 1, 4)^i f_{k-3} & (f_{k-1} < i < f_k)
\end{cases}
\]

Proof. If \(i = 0 \), then the statement follows from Theorem 2. Let

\[
\begin{align*}
A_j & = \mathbb{B}^i (\varepsilon_j, \varepsilon_{j+1}, \ldots, \varepsilon_{j+f_{k-1}-1}) \\
A'_j & = \mathbb{B}^i (\varepsilon_j, \varepsilon_{j+1}, \ldots, \varepsilon_{j+f_{k-1}-2}) \\
B'_j & = \mathbb{B}^i (\varepsilon_{j+f_{k-1}}, \varepsilon_{j+f_{k-1}+1}, \ldots, \varepsilon_{j+f_k-1}) \\
& (j = 0, 1, 2, \ldots).
\end{align*}
\]

Then, by the same argument as in the proof of Theorem 3, we obtain

\[
H_{n, f_{k-1}} = \det \begin{pmatrix} A_i \cdots A_{f_{k-1}} & A_0 \cdots A_{i-2} \\
B'_i \cdots B'_{f_{k-1}} & B'_0 \cdots B'_{i-2} \end{pmatrix} = (-1)^{(i-1)(f_k-i)} \det \begin{pmatrix} A_0 \cdots A_{i-2} & A_1 \cdots A_{f_k-1} \\
B'_0 \cdots B'_{i-2} & B'_1 \cdots B'_{f_k-1} \end{pmatrix}.
\]

Therefore, if \(f_{k-2} < i \leq f_{k-1} \), then by the same argument to get (17), we obtain

\[
(-1)^{(i-1)(f_k-i)} H_{n, f_{k-1}} =
\]

20
\[
\begin{vmatrix}
A_0 \cdots A_{i-2} A_i \cdots A_{f_{k-1}} & 0 & \cdots & 0 & A_{f_k-1} \\
0 & \cdots & 0 & 0 & \vdots \\
(-1)^k & (\cdots) & (\cdots) & (\cdots) & (-1)^{k-1}
\end{vmatrix}.
\]

Since by Lemma 5

\[
A_{f_{k-1}} - A_{f_{k-2}-1} = \begin{pmatrix} 0 \\ \vdots \\ 0 & (-1)^k \end{pmatrix},
\]

we get

\[
(-1)^{(i-1)(f_k-i)} H_{n,f_{k-1}} =
\begin{vmatrix}
A'_0 \cdots A'_{i-2} A'_i \cdots A'_{f_{k-2}-1} & 0 & \cdots & 0 & 0 \\
* & \cdots & * & \cdots & * \\
0 & \cdots & 0 & (-1)^k & (\cdots) \\
(-1)^k & (\cdots) & (\cdots) & (\cdots) & (-1)^{k-1}
\end{vmatrix}
\]

\[
= (-1)^{(i-1)(f_k-i)} \left[f_{k-2} \right] \det(A'_0 \cdots A'_{i-2} A'_i \cdots A'_{f_{k-2}-1})
\]

\[
= \chi(k : 1, 3, 4, 5)(-1)^{(i-1)(f_k-i)} H_{i+f_k,f_{k-1}-1}.
\]

Thus we obtain

\[
H_{n,f_{k-1}} = \chi(k : 2, 3) \chi(k : 1, 2, 4, 5)^i H_{i+f_k,f_{k-1}-1}.
\]

Assume that \(f_{k-1} < i < f_k \). Then as above we have

\[
(-1)^{(i-1)(f_k-i)} H_{n,f_{k-1}} =
\]

21
\[
\begin{pmatrix}
A_0 \cdots A_{f_{k-1}-1} & 0 & \cdots & 0 & \cdots & 0 & A_{f_k-1} \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
(-1)^{k-1} & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}
\]
\[
\det
\begin{pmatrix}
0 & (-1)^{k-1} & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
(-1)^{k-1} & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
(-1)^k & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}
\]
\[
= (-1)^{k(i - f_{k-1} - 1) + (k-1)(f_k - i) + \left[\frac{f_k - 2}{2}\right]} \det(A_0 \cdots A_{f_{k-1}-1}).
\]

Hence, by Lemma 13
\[
H_{n, f_k-1} = \chi(k : 0, 3, 4) \chi(k : 1, 4)^i H_{0, f_k-1}
\]
\[
= \chi(k : 0, 4) \chi(k : 1, 4)^i f_{k-2}.
\]

Assume that \(0 < i < f_{k-2}\). Then, since \(A_{i-1} + f_{k-1} = A_{i-1}\), by the same arguments as above we get
\[
(-1)^{(i-1)(f_k - i)} H_{n, f_k-1} =
\]
\[
\begin{pmatrix}
A_0' \cdots A_{i-2}' A_{i-1}' \cdots A_{f_{k-1}-1}' & 0 & \cdots & 0 & \cdots & 0 \\
* & \cdots & * & \cdots & * & \cdots \\
0 & \cdots & 0 & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
(-1)^{k-1} & (-1)^{k-1} & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}
\]
\[
\det
\begin{pmatrix}
(-1)^k \\
\vdots \\
0 \\
\end{pmatrix}
\]
\[
= (-1)^{k(i-1)} (-1)^{\left[\frac{f_k - 2}{2}\right]} \det(A_0' \cdots A_{i-2}' A_{i-1}' \cdots A_{f_{k-1}-1}')
\]
\[
+ (-1)^{k(i-1) + (k-1)(f_{k-2} - i) - 1} \left[\frac{f_k - 2}{2}\right]
\]
\[
\det(A_0 \cdots A_{i-2} A_{i-1} \cdots A_{f_{k-1}-1} A_{i-1}).
\]

Since
\[
\det(A_0 \cdots A_{i-2} A_{i-1} \cdots A_{f_{k-1}-1} A_{i-1}) = (-1)^{f_k - i - 1} H_{0, f_k-1},
\]

22
Lemma 13

\[H_{n,f_{k-1}} = \chi(k : 2, 3) \chi(k : 1, 2, 4, 5)^i H_{i+f, f_{k-1}} + \chi(k : 1, 2, 3, 5) \chi(k : 1, 4)^i f_{k-2} \cdot (21) \]

Note that (21) holds also for \(i = f_{k-2} \) since in this case,

\[H_{n,f_{k-1}} = (-1)^{k(f_{k-2}-1)} \left[\frac{f_{k-2}-1}{2} \right] \]

\[\det(A_0 \cdots A_{f_{k-2}-2} A_{f_{k-2}} \cdots A_{f_{k-1}-2} A_{f_{k-1}}) \]

and

\[A_{f_{k-1}} = A_{f_{k-1}-1} + (-1)^k, \]

which completes the proof for \(H_{n,f_{k-1}} \).

Lemma 16 For any \(k, n, i \in \mathbb{N} \) with \(k \geq 1 \) and \(n \equiv_{i+1} i \), assume that either \(\tau_{k+1}(n) = 0 \) and \(0 \leq i < f_{k-1} \) or \(\tau_{k+1}(n) = 1 \) and \(0 \leq i < f_k \). Then we have

\[
H_{n,f_{k-1}} = \begin{cases}
\chi(k : 2, 3, 5) f_{k-3} & (i = 0) \\
\chi(k : 1, 2, 3, 5) \chi(k : 1, 4)^i f_{k-2} & (0 < i \leq f_{k-1}) \\
\chi(k : 0, 4) \chi(k : 1, 4)^i f_{k-2} & (f_{k-1} < i < f_k)
\end{cases}
\]

\[
\overline{H}_{n,f_{k-1}} = \begin{cases}
\chi(k : 2, 3, 4, 5) f_{k-3} & (i = 0) \\
\chi(k : 0, 1) \chi(k : 1, 4)^i f_{k-4} & (0 < i \leq f_{k-1}) \\
\chi(k : 2, 3, 4, 5) \chi(k : 1, 4)^i f_{k-3} & (f_{k-1} < i < f_k)
\end{cases}
\]

Proof: The first and the third cases have been already proved in Lemma 15. Let us consider the second case where \(0 < i \leq f_{k-1} \). We divide it into two subcases, and use induction on \(k \).

Case 1. \(i = 1 \):

If \(k = 1 \), then

\[H_{n,f_{k-1}} = H_{n,1} = \varepsilon_n = 0 \]

since \(n \equiv_2 1 \) and \(\tau_0(n) = 1 \). On the other hand, \(f_{k-3} = f_{k-2} = 0 \), and hence, we get the statement. Assume that \(k \geq 2 \) and the assertion holds for \(k - 1 \).
Then, by Lemma 15 and the induction hypothesis, we get
\[
H_{n,f_{k-1}} \\
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i H_{i+f_{k-1}, f_{k-1}-1} + \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2} \\
= \chi(k : 1, 3, 4, 5)H_{i+f_{k-1}, f_{k-1}-1} + \chi(k : 2, 3, 4, 5)f_{k-2} \\
= \chi(k : 1, 3, 4, 5)\chi(k - 1 : 2, 3, 4, 5)f_{k-4} + \chi(k : 2, 3, 4, 5)f_{k-2} \\
= \chi(k : 0, 1)f_{k-4} + \chi(k : 2, 3, 4, 5)f_{k-2} \\
= \chi(k : 2, 3, 4, 5)f_{k-3},
\]

which is the desired statement.

Case 2. \(i \geq 2\):

If \(f_{k-2} < i \leq f_{k-1}\), then it follows from the third case and then the fourth case of Lemma 15 that
\[
H_{n,f_{k-1}} \\
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i H_{i+f_{k-1}, f_{k-1}-1} \\
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i \chi(k - 1 : 0, 4)\chi(k - 1 : 1, 4)^i f_{k-3} \\
= \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-3}.
\]

Assume that \(i \leq f_{k-2}\) and the statement holds for \(k - 1\). Then by Lemma 15, we get
\[
H_{n,f_{k-1}} \\
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i H_{i+f_{k-1}, f_{k-1}-1} + \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2} \\
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i \chi(k - 1 : 1, 2, 3, 5)\chi(k - 1 : 1, 4)^i f_{k-4} \\
+ \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2} \\
= \chi(k : 0, 4)\chi(k : 1, 4)^i f_{k-4} + \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2} \\
= \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-3}.
\]

This completes the proof for \(H_{n,f_{k-1}}\).

Lemma 17 For any \(k, n \in \mathbb{N}\) with \(k \geq 2\) and \(\tau_{k+1}(n) = 0\), we have
\[
H_{n,f_{k-1}} = \begin{cases}
\chi(k : 2, 3, 4, 5)f_{k-3} & (n \equiv_{k+1} f_{k-1}) \\
\chi(k : 0, 4)f_{k-2} & (n \equiv_{k+1} f_{k-1} + 1)
\end{cases}
\]

24
Proof. Assume that \(n \equiv_{k+1} f_{k-1} \). Then since \(\tau_{k+1}(n) = 0 \), we have \(n \equiv_{k+2} f_{k-1} \). Therefore, by Lemma 3 and 7, we get

\[
H_{n,f_{k-1}} = \det \left(\begin{array}{ccc}
A_{f_{k-1}} \cdots A_{f_{k-1}+1} A_{f_{k}} \cdots A_{f_{k}+1-2} \\
B'_{f_{k-1}} \cdots B'_{f_{k-1}+1} B'_{f_{k}} \cdots B'_{f_{k}+1-2}
\end{array} \right),
\]

where we use the notation (20). By Lemma 5, the following two subwords of \(\varepsilon \):

\[
\varepsilon_{n} \varepsilon_{n+1} \cdots \varepsilon_{n+f_{k-2}+f_{k}-3} \quad \text{and} \quad \varepsilon_{n+f_{k-1}} \varepsilon_{n+f_{k-1}+1} \cdots \varepsilon_{n+f_{k-1}+f_{k-2}+f_{k}-3}
\]

differ only at two places, namely, at the \((f_{k} - 2 - f_{k-1})\)-th and the \((f_{k} - 1 - f_{k-1})\)-th places. Hence, we have

\[
H_{n,f_{k-1}} = \det \left(\begin{array}{ccc}
A_{f_{k-1}} \cdots A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k}+1-2} \\
B'_{f_{k-1}} \cdots B'_{f_{k}-1} B'_{f_{k}} \cdots B'_{f_{k}+1-2}
\end{array} \right) = \\
\left(\begin{array}{cccc}
A_{f_{k-1}} & \cdots & A_{f_{k}-1} & A_{f_{k}} \cdots A_{f_{k}+1-2} \\
0 & \cdots & 0 & \vdots \vrule \vline \\
(-1)^{k} & \cdots & (-1)^{k} & \vdots \vrule \vline \\
0 & \cdots & 0 & (-1)^{k-1}
\end{array} \right).
\]

By adding the first \(f_{k-2} - 1 \) columns and subtracting the last \(f_{k-2} - 1 \) columns to and from the column beginning by \(A_{f_{k}-1} \), we get the column

\[
^t(A_{f_{k-1}} 0 \cdots 0) + ^t((-1)^{k-1} 0 \cdots 0(-1)^{k} 0 \cdots 0),
\]

where \((-1)^{k}\) is at the \((f_{k-2} - 1)\)-th place. Since, by Lemma 5

\[
(A_{f_{k-1}} \cdots A_{f_{k}-2}) - (A_{f_{k-1}} \cdots A_{f_{k}+1-2}) =
\]

25
\[
\begin{pmatrix}
0 & (-1)^{k-1} & (-1)^k \\
 & \ddots & \ddots \\
(-1)^{k-1} & (-1)^k & 0 \\
(-1)^{k-1} & (-1)^k & 0 \\
& & & 0
\end{pmatrix},
\]

hence, we get

\[
H_{n,f_{k-1}} = (-1)^{k(f_k-2)+1} (-1)^{f_{k-1}(f_{k-2}-1)+1} \left[\frac{A_{k-1}}{A_{k-1}} \right]
\]

\[
\{ \det(A_{f_{k-1}} A_{f_k} \cdots A_{f_{k+1}-2}) + (-1)^{k-1} \det(A''_{f_k} \cdots A''_{f_{k+1}-2}) \\
+ (-1)^{k+f_{k-2}-1} \det(A''_{f_{k+1}} A''_{f_{k+1}-2}) \},
\]

where

\[
A''_{j} := \left(\varepsilon_{j+1} \cdots \varepsilon_{j+f_{k-1}-1} \right) \\
A''_{j} := \left(\varepsilon_{j+1} \cdots \varepsilon_{j+f_{k-2}-2} \varepsilon_{j+f_{k-2}} \cdots \varepsilon_{j+f_{k-1}-1} \right).
\]

Here, we have

\[
\det(A_{f_{k-1}} A_{f_k} \cdots A_{f_{k+1}-2}) = H_{f_{k-1}, f_{k-1}} \\
\det(A''_{f_k} \cdots A''_{f_{k+1}-2}) = H_{f_{k+1}, f_{k-1}}.
\]

and by Lemma 5

\[
\det(A''_{f_k} \cdots A''_{f_{k+1}-2}) = \]

26
where we put

\[C_j = (\varepsilon_j \varepsilon_{j+1} \cdots \varepsilon_{j+f_k-2-1}). \]

Since \(C_{f_k+f_k-2+j} = C_{f_k+j} \) (\(j = 0, 1, \cdots, f_k-3 - 2 \)) by Lemma 5, it holds that

\[
\begin{vmatrix}
C_{f_k} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
C_{f_k+f_k-2} & \cdots & C_{f_k+f_k-2-2} \\
\vdots & \ddots & \vdots \\
C_{f_k+1} & \cdots & 0 \\
\end{vmatrix}
= (-1)^{(k-1)(f_k-3-1)+f_k-3-1+\left\lfloor \frac{f_k-3-1}{2} \right\rfloor} \det \begin{pmatrix}
C_{f_k} \\
\vdots \\
C_{f_k+f_k-2} \\
C_{f_k+1} \\
\end{pmatrix}.
\]

Moreover it follows from Lemma 5 that

\[
\begin{vmatrix}
C_{f_k} \\
\vdots \\
C_{f_k+f_k-2} \\
C_{f_k+1} \\
\end{vmatrix} = \det \begin{pmatrix}
C_{f_k+1} \\
\vdots \\
C_{f_k+1+f_k-2} \\
C_{f_k+1} \\
\end{pmatrix} = (-1)^{f_{k-2}-1} H_{f_{k+1}-1, f_{k-2}}.
\]
which implies
\[
\det(A'''_k \cdots A''_{k+1-2}) = \chi(k : 0, 3, 5) H_{f_{k+1-1}, f_{k-2}}.
\]

Thus by (22), (23), Theorem 3 and Lemma 16, we obtain
\[
H_{n, f_k-1} = \chi(k : 4) H_{f_{k-1}, f_{k-1}} + \chi(k : 0, 2) H_{f_{k+1}, f_{k-1}-1} + \chi(k : 1, 3, 4) H_{f_{k+1}, f_{k-2}} = \chi(k : 2, 3, 4, 5) f_{k-3} + \chi(k : 2, 3, 4, 5) f_{k-4} + \chi(k : 0, 1) f_{k-4}
\]
which is the first case of our lemma.

To prove the second case, assume that \(n \equiv_{k+1} f_{k-1} + 1 \). Then, as above we get
\[
H_{n, f_k-1} = \det \left(\begin{array}{cccc}
A_{f_{k-1}+1} & \cdots & A_{f_k} & A_{f_{k+1}-1} \\
B'_{f_{k-1}+1} & \cdots & B'_{f_k} & B'_{f_{k+1}-1}
\end{array} \right)
= \det \left(\begin{array}{cccc}
A_{f_{k-1}+1} & \cdots & A_{f_k} & A_{f_{k+1}-1} \\
0 & \cdots & 0 & 0 \\
(-1)^k & \cdots & (-1)^{k-1} \\
(-1)^k & \cdots & (-1)^{k-1}
\end{array} \right)
= (-1)^{(k-1)(f_{k-2}-1)} (-1)^{(f_{k-2}-1)f_{k-1} + \left[\frac{f_{k-2}-1}{2} \right]} \det(A_k \cdots A_{f_{k+1}-1}) .
\]
Therefore, we get by Theorem 3
\[
H_{n, f_k-1} = \chi(k : 0, 3, 4) \chi(k - 1 : 2) f_{k-2} = \chi(k : 0, 4) f_{k-2} ,
\]
which completes the proof for \(H_{n, f_k-1} \). \(\blacksquare \)
Theorem 4 For any $k, n, i \in \mathbb{N}$ with $k \geq 1$, $n \equiv_{k+1} i$ and $0 \leq i < f_{k+1}$, we have

$$H_{n,f_{k-1}} = \begin{cases} \chi(k : 0, 4) f_{k-2} & (i = 0) \\ \chi(k : 1, 2, 3, 5) \chi(k : 1, 4)^i f_{k-3} & (0 < i \leq f_{k-1}) \\ \chi(k : 0, 4) \chi(k : 1, 4)^i f_{k-2} & \left(f_{k-1} < i < f_k \right. \\ \text{(and } \tau_{k+1}(n) = 1 \left. \right) \\ 0 \quad \text{ (otherwise) } \end{cases}$$

$$\Pi_{n,f_{k-1}} = \begin{cases} \chi(k : 2, 3, 4, 5) f_{k-3} & (i = 0) \\ \chi(k : 0, 1) \chi(k : 1, 4)^i f_{k-4} & (0 < i \leq f_{k-1}) \\ \chi(k : 2, 3, 4, 5) \chi(k : 1, 4)^i f_{k-3} & \left(f_{k-1} < i < f_k \right. \\ \text{(and } \tau_{k+1}(n) = 1 \left. \right) \\ 0 \quad \text{ (otherwise) } \end{cases}$$

Proof. The first four cases follow from Lemma 16 and 17. Note that for $i = f_{k-1}$, the assertion in these lemmas coincide, so that $H_{n,f_{k-1}}$ is independent of $\tau_{k+1}(n)$. Let us consider the last case, where $\tau_{k+1}(n) = 0$ and $f_{k-1} + 2 \leq i \leq f_{k-1} - 1$. We may assume that $k \geq 2$. Then, with $m = f_k - 1$ and $i - f_k$ in place of i there, the condition (2) of Theorem 1 is satisfied. Therefore by Theorem 1, $n \in \mathcal{R}_m$ which implies that $H_{n,f_{k-1}} = 0$.

Lemma 18 For any $n, m \in \mathbb{N}$ such that $f_{k-2} + 1 \leq m \leq f_k - 2$, $i \leq n$ and $n - i \equiv_{k+1} 0$ for some $i, k \in \mathbb{Z}$ with $k \geq 2$ and $m + i = f_k$. Then, we have

$$H_{n,m} = \chi(k : 2) \chi(k : 3, 4, 5)^i (-1)^{i/2} f_{k-3}$$
\[\prod_{n,m} = \chi(k : 1, 4)\chi(k : 0, 1, 2)^i(-1)^{[i/2]} f_{k-3} . \]

\textit{Proof.} At first, we consider the case \(i < f_{k-2} \). By arguments similar to those used in the proof of Lemma 15, we get with the notation (20)

\[
H_{n,m} = \begin{pmatrix} A_i A_{i+1} & \cdots & A_{f_k-1} & 0 & \cdots & 0 & A_{f_k-1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & (-1)^k & (-1)^{k-1} \\ \end{pmatrix}.
\]

Therefore, by Theorem 3 and 4,

\[
H_{n,m} = (-1)^{(f_{k-2} - i + 1)} + \left[\frac{f_{k-2} - i + 1}{2} \right] H_{i, f_k-1} + (-1)^{(k-1)(f_{k-2} - i)} + \left[\frac{f_{k-2} - i}{2} \right] H_{i, f_k-1}.
\]

\[
= \chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{[i/2]} (-f_{k-4} + f_{k-2})
\]

\[
= \chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{[i/2]} f_{k-3} .
\]

If \(i = f_{k-2} \), then the lemma follows from Theorem 3.

Finally, we consider the case \(f_{k-2} < i < f_{k-1} \). Then, denoting

\[
A^*_j = (e_j e_{j+1} \cdots e_{i+r-1}),
\]

we obtain by Theorem 3

\[
H_{n,m} = \det(A_i f_k-i A_{i+1} f_k-i \cdots A_{f_k-1} f_k-i) =
\]

\[
\begin{pmatrix} A_i f_k-i & A_{i+1} f_k-i & \cdots & A_{f_k-2} f_k-i & A_{f_k-2} f_k-i & A_{f_k-2} f_k-i & \cdots & A_{f_k-2} f_k-i \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\ 0 & \cdots & 0 & (-1)^k & (-1)^k & (-1)^k & \cdots & 0 \\ \end{pmatrix}
\]

\[
= (-1)^{(f_{k-1} - i)} (-1)^{(f_{k-1} - i) f_k-2} + \left[\frac{f_{k-1} - i}{2} \right] H_{f_{k-1}, f_k-2}
\]

\[
= \chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{[i/2]} f_{k-3} .
\]

\[
= \chi(k : 1, 4)\chi(k : 0, 1, 2)^i(-1)^{[i/2]} f_{k-3} .
\]
which completes the proof for $H_{n,m}$.

Lemma 19 For any $n, m \in \mathbb{N}$ such that $f_{k-1} + 1 \leq m \leq f_k - 2$, $i \leq n$, $n - i \equiv_k f_{k-1}$ for some $i, k \in \mathbb{Z}$ with $k \geq 2$ and $m + i = f_k$, we have

$$H_{n,m} = \chi(k : 1, 2, 4)\chi(k : 0, 1, 2)^i(-1)^{[i/2]}f_{k-2}$$

$$\overline{P}_{n,m} = \chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{[i/2]}f_{k-3}.$$

Proof. By the same arguments and in the same notations as in the second part of the proof of Lemma 18, we obtain

$$H_{n,m} = \det(A_{i+1}^{f_{k-1} - i} \cdots A_{i+1}^{f_{k-1} - i} A_{f_k}^{f_{k-1} - i} \cdots A_{f_{k+1} - 1}^{f_{k-1} - i}) =$$

$$\det\begin{pmatrix}
A_{i+1}^{f_{k-1} - i} & A_{i+1}^{f_{k-1} - i} & \cdots & A_{f_k - 1}^{f_{k-1} - i} & A_{f_k - 1}^{f_{k-1} - i} & \cdots & A_{f_{k+1} - 1}^{f_{k-1} - i} \\
0 & (-1)^{k-1} & \cdots & \cdots & \cdots & \cdots & 0 \\
(-1)^{k} & (-1)^{k-1} & \cdots & \cdots & \cdots & \cdots & 0 \\
\end{pmatrix}$$

$$= (-1)^{(k-1)(f_k - 2 - i)}(-1)^{(f_k - 2 - i)f_k - 1}f_{k-2}^{f_{k-2}}H_{f_k, f_k - 1},$$

which completes the proof for $H_{n,m}$.

Lemma 20 For any $n, m \in \mathbb{N}$ such that $f_{k-1} + 1 \leq m \leq f_k - 2$, $i \leq n$ and $n - i \equiv_{k+1} 0$ for some $i, k \in \mathbb{Z}$ with $k \geq 2$ and $m + i = f_k - 1$, we have

$$H_{n,m} = \chi(k : 0, 4)\chi(k : 3, 4, 5)^i(-1)^{[i/2]}f_{k-2}$$

$$\overline{P}_{n,m} = \chi(k : 2, 3, 4, 5)\chi(k : 0, 1, 2)^i(-1)^{[i/2]}f_{k-3}.$$

Proof. The proof is similar to the first part of the proof of Lemma 18. With the notation in (20), we get

$$H_{n,m} =$$

31
\[
\begin{pmatrix}
A_i A_{i+1} & \cdots & A_{j_k-i} \cdots & 0 & 0 & \cdots & 0 \\
0 & & & & & & (-1)^k \\
& & & & & \cdots & \\
& & & & & & (-1)^k & (-1)^{k-1} & 0
\end{pmatrix}
\]

\[
= (-1)^{k(f_{k-2} - 1)} \left(-1 \right)^{\left[{\frac{k-2-i}{2}}\right]} \det(A_i A_{i+1} \cdots A_{j_k-i-1}).
\]

Hence, by Theorem 3
\[
H_{n,m} = \chi(k : 0, 4) \chi(k : 3, 4, 5)^i (-1)^{\frac{k-2}{2}} f_{k-2} ,
\]
which completes the proof for \(H_{n,m} \).

Lemma 21 For any \(n, m \in \mathbb{N} \) such that \(f_{k-2} + 1 \leq m \leq f_k - 2 \), \(i \leq n \) and \(n - i \equiv_k f_{k-1} \) for some \(i, k \in \mathbb{Z} \) with \(k \geq 2 \) and \(m + i = f_k - 1 \), we have
\[
H_{n,m} = \chi(k : 2, 3, 4, 5) \chi(k : 0, 1, 2)^i (-1)^{\frac{k-2}{2}} f_{k-3} \\
\mathcal{H}_{n,m} = \chi(k : 0, 4) \chi(k : 3, 4, 5)^i (-1)^{\frac{k-2}{2}} f_{k-4} .
\]

Proof. Since \(i = f_k - 1 - m \), we get \(1 \leq i \leq f_{k-1} - 2 \)

If \(i = f_{k-2} - 1 \), then \(m = f_{k-1} - 1 \) and \(n \equiv_k f_k - 1 \). Therefore, by Theorem 3, we get
\[
H_{n,m} = \chi(k - 1 : 1, 2, 4) f_{k-3},
\]
which coincides with the required identity since
\[
\chi(k : 0, 1, 2)^{f_{k-2} - 1} = \chi(k : \{0, 1, 2\} \cap \{0, 3\}) = \chi(k : 0), \\
(-1)^{\left[{\frac{k-2}{2}}\right]} = \chi(k : 0, 4).
\]

If \(i = f_{k-2} \), then \(m = f_{k-1} - 1 \) and \(n \equiv_k 0 \). Therefore, by Theorem 4, we get
\[
H_{n,m} = \chi(k - 1 : 0, 4) f_{k-3},
\]
which coincides with the required statement since
\[
\chi(k : 0, 1, 2)^{f_{k-2}} = \chi(k : \{0, 1, 2\} \cap \{1, 2, 4, 5\}) = \chi(k : 1, 2), \\
(-1)^{\left[{\frac{f_{k-2}}{2}}\right]} = \chi(k : 3, 4).
\]
If \(f_{k-2} + 1 \leq i \leq f_{k-1} - 2 \), then \(n - i' \equiv k \) 0 with \(i' := i - f_{k-2} \). Then, since \(m' = f_{k-1} - 1 \) and \(f_{k-2} + 1 \leq m \leq f_{k-1} - 2 \), applying Lemma 20, we obtain

\[
H_{n,m} = \chi(k - 1 : 0, 4)\chi(k - 1 : 3, 4, 5)^{j'}(-1)^{[i'/2]}f_{k-3} \\
= \chi(k : 1, 5)\chi(k : 0, 4, 5)^{i'}\chi(k : \{0, 4, 5\} \cap \{1, 2, 4.5\})(-1)^{[i'/2]}f_{k-3} \\
= \chi(k : 1, 4)^{i'}(-1)^{[i'/2]}(-1)^{\frac{f_{k-2} + 1}{2}}(-1)^{i'f_{k-2}f_{k-3}} \\
= \chi(k : 2, 3, 4, 5)\chi(0, 1, 2)^{j}(-1)^{[i'/2]}f_{k-3}.
\]

Now, we consider the case \(1 \leq i \leq f_{k-2} - 2 \). Then, with the notations in (24) and in (20), we get

\[
H_{n,m} = \det(A_{f_{k-1}+i}^{f_{k}-i} \cdots A_{f_{k}}^{f_{k}-i} A_{f_{k}}^{f_{k}-i+1} \cdots A_{f_{k+1}}^{f_{k}-i}) = \\
\begin{pmatrix}
A_{f_{k-1}+i}^{f_{k}-i} & A_{f_{k-1}+i+1}^{f_{k}-i} & \cdots & A_{f_{k}}^{f_{k}-i} & A_{f_{k}}^{f_{k}-i} & A_{f_{k+1}}^{f_{k}-i} \\
0 & (\det A_{f_{k}}^{f_{k+1}})^{-1} & \cdots & 0 \\
(\det A_{f_{k}}^{f_{k+1}})^{-1}
\end{pmatrix}.
\]

Therefore, by arguments similar to those used in the first part of the proof of Lemma 17, we get

\[
H_{n,m} = (\det A_{f_{k}}^{f_{k+1}})^{-1}(\det A_{f_{k}}^{f_{k+1}})^{-1}f_{k-2}^{-1-i}(-1)^{i'f_{k-2}f_{k-3}} + (\det A_{f_{k}}^{f_{k+1}})^{-1}f_{k-2}^{-1-i}
\]

where we use the same notations as in the proof of Lemma 17 except for \(A_{j}^{m} \)'s which are defined by

\[
A_{j}^{m} = \varepsilon_{j} \cdots \varepsilon_{j+f_{k-2}+i-2} \varepsilon_{j+f_{k-2}-i} \cdots \varepsilon_{j+f_{k-2}+i-1}.
\]
Then, following the arguments there, we get

\[H_{n,m} = \chi(k : 4)\chi(k : 0, 1, 2)^i(-1)^{i/2} \left\{ H_{h_{k-1} - 1} + (-1)^{k-1}H_{f_{k+1} - 1} \right\} \]

with

\[E := \det(A''_{f_k} \cdots A''_{f_{k+1} - 2}) \]
\[= \det(A'_{f_k} \cdots A'_{f_{k+1} - 2} - A'_{f_{k+1} + f_{k+2} - i - 2} \cdots A'_{f_{k+1} - 1}) \]
\[= \det(A'_{f_{k+1} + f_{k+2} - i - 2} \cdots A'_{f_{k+1} - 1}) \]
\[= (-1)^{f_{k+2} - i - 1}(f_{k+2} - i) \det(A'_{f_{k+1} + f_{k+2} - i - 2}) \]
\[= (-1)^{f_{k+2} - i - 1}(f_{k+2} - i)H_{f_{k+2} - i} \]

where we have used Lemma 5. Therefore, by Theorem 3 and 4, we have

\[H_{n,m} = \chi(k : 4)\chi(k : 0, 1, 2)^i(-1)^{i/2} \left\{ \chi(k - 1 : 1, 2, 4)_{f_{k-3}} \right. \]
\[+ (-1)^{k-1}\chi(k - 1 : 2, 3, 4, 5)_{f_{k-4}} \]
\[\left. + (-1)^{k+1}(-1)^{f_{k-2} - i - 1}(f_{k-3} + i) \right\} \]
\[= \chi(k : 2, 3, 4, 5)\chi(k : 0, 1, 2)^i(-1)^{i/2}f_{k-3}, \]

which completes the proof for \(H_{n,m} \).

\[\square \]

4 Tiling for \(H_{n,m} \) and \(\mathcal{H}_{n,m} \)

In this section, we collect the values of \(H_{n,m} \) and \(\mathcal{H}_{n,m} \) obtained in the last section and arrange them in the quarter plane \(\Omega := \{0, 1, 2, \cdots\} \times \{1, 2, 3, \cdots\} \). We will tile \(\Omega \) by the following tiles on which the values \(H_{n,m} \) are written in. That is,

\[U_1 := V_1 := \{(1, -1)\} \]
\[U_k := \{(i, j) \in \mathbb{Z}^2; 0 \leq i + j \leq f_{k-1} - 1, \ -f_{k-1} \leq j < -1\} \]
\[V_k := \{(i, j) \in \mathbb{Z}^2; 0 \leq i + j \leq f_{k-2} - 1, \ -f_{k-2} \leq j < -1\} \]
\[(k = 2, 3, 4, \cdots) \]
with the written-in values $u_k : U_k \to \mathbb{Z}$, $v_k : V_k \to \mathbb{Z}$:
\[u_1(1, -1) := 0, \quad v_1(1, -1) := 1 \]
\[
u_k(i, j) := \begin{cases}
\chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{\lceil i/2 \rceil}f_{k-3} & (i + j = 0) \\
\chi(k : 0, 3, 4)\chi(k : 0, 3)^i f_{k-3} & (j = -f_{k-1}) \\
\chi(k : 3, 5)\chi(k : 2, 3, 4)^i(-1)^{\lceil i/2 \rceil}f_{k-3} & (i + j = f_{k-1} - 1) \\
\chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-3} & (j = -1) \\
0 & (\text{otherwise})
\end{cases}
\]
\[
u_k(i, j) := \begin{cases}
\chi(k : 1, 2, 4)\chi(k : 0, 1, 2)^i(-1)^{\lceil i/2 \rceil}f_{k-2} & (i + j = 0) \\
\chi(k : 2, 3, 5)\chi(k : 2, 5)^i f_{k-2} & (j = -f_{k-2}) \\
\chi(k : 0, 1, 2, 3)^i(-1)^{\lceil i/2 \rceil}f_{k-2} & (i + j = f_{k-2} - 1) \\
\chi(k : 0, 1)^i f_{k-2} & (j = -1) \\
0 & (\text{otherwise})
\end{cases}
\]
\[
(k = 2, 3, 4, \cdots) ,
\]
\[
\overline{u}_k : U_k \to \mathbb{Z} \quad \text{and} \quad \overline{v}_k : V_k \to \mathbb{Z} : \]
\[
\overline{u}_1(1, -1) := 1, \quad \overline{v}_1(1, -1) := 0
\]
\[
\overline{u}_k(i, j) := \begin{cases}
\chi(k : 1, 4)\chi(k : 0, 1, 2)^i(-1)^{\lceil i/2 \rceil}f_{k-4} & (i + j = 0) \\
\chi(k : 4)\chi(k : 0, 3)^i f_{k-4} & (j = -f_{k-1}) \\
\chi(k : 1, 2, 3, 4)^i(-1)^{\lceil i/2 \rceil}f_{k-4} & (i + j = f_{k-1} - 1) \\
\chi(k : 0, 1)^i f_{k-4} & (j = -1) \\
0 & (\text{otherwise})
\end{cases}
\]
\[
\overline{v}_k(i, j) := \begin{cases}
\chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{\lceil i/2 \rceil}f_{k-3} & (i + j = 0) \\
\chi(k : 3)\chi(k : 2, 5)^i f_{k-3} & (j = -f_{k-2}) \\
\chi(k : 2, 4)\chi(k : 0, 4, 5)^i(-1)^{\lceil i/2 \rceil}f_{k-3} & (i + j = f_{k-2} - 1) \\
\chi(k : 1, 2, 3, 5)^i(-1)^{\lceil i/2 \rceil}f_{k-3} & (j = -1) \\
0 & (\text{otherwise})
\end{cases}
\]
\[
(k = 2, 3, 4, \cdots).
\]
Let
\[
\mathcal{U}_k := \{(n, f_k); \ n \in \mathbb{N} \quad \text{and} \quad n \equiv_{k+1} 0\}
\]

35
\(\mathcal{V}_k := \{(n, f_k); n \in \mathbb{N} \text{ and } n \equiv_{k+2} f_{k+1} + f_{k-1}\} \)

\(T_k := (V_k + (-f_{k-2}, f_k)) \cap \Omega \)

\((k = 1, 2, 3, \ldots) \),

where \(V + (x, y) := \{v + x, w + y\}; (v, w) \in V \) for \(V \subset \mathbb{Z}^2 \), \((x,y) \in \mathbb{Z}^2 \).

Theorem 5 It holds that

\[
\Omega = \bigcup_{k=1}^{\infty} \left(\bigcup_{(i,j) \in U_k} (U_k + (i, j)) \cup \bigcup_{(i,j) \in V_k} (V_k + (i, j)) \cup T_k \right),
\]

where the right hand side is a disjoint union, so that \(\Omega \) is tiled by the tiles \(U_k \)'s, \(V_k \)'s and \(T_k \)'s. Moreover, for any \((n, m) \in \mathcal{V}_k\), if \((n, m) = (i, j) + (i', j')\) with \((i, j) \in U_k\) and \((i', j') \in U_k\), then we have \(H_{n,m} = u_k(i, j) \) and \(\overline{H}_{n,m} = u_k(i, j) \). Also, if \((n, m) = (i, j) + (i', j')\) with \((i, j) \in V_k\) and either \((i', j') \in \mathcal{V}_k\) or \((i', j') = (-f_{k-2}, f_k)\), then we have \(H_{n,m} = v_k(i, j) \) and \(\overline{H}_{n,m} = v_k(i, j) \). Furthermore, in this tiling, the tiles \(U_k\), \(V_k\) and \(T_k\) with \(k \geq 2 \) are followed by the sequences of smaller tiles \(U_{k-1}V_{k-1}U_{k-1}, U_{k-1} \) and \(U_{k-1}\), respectively, as shown in Figure 1.

Proof. Take an arbitrary point \((n, m) \in \mathcal{V}_k\). Let \(f_{k-1} \leq m < f_k \). If \(n + m - f_k \geq 0\), define \(0 \leq i < f_{k+2} \) by \(i \equiv_{k+2} n \).

Case 1 \(n + m - f_k < 0 \): We get \((n, m) \in T_k\).

Case 2 \(0 \leq i < f_{k-1} \): We get \((n, m) \in U_k + (n + m - i - f_k, f_k)\).

Case 3 \(f_{k-1} \leq i < f_{k+1} \): We get \((n, m) \in U_{k+1} + (n + m - i - f_{k+1}, f_{k+1})\).

Case 4 \(f_{k+1} \leq i < f_{k+1} + f_{k-1} \): We get \((n, m) \in U_k + (n + m - i + f_{k-1}, f_k)\).

Case 5 \(f_{k+1} + f_{k-1} \leq i < f_{k+2} \): We get \((n, m) \in V_k + (n + m - i + 2f_{k-1}, f_k)\).

The fact that the written-in values coincide with \(H_{n,m} \) and \(\overline{H}_{n,m} \) follows from Lemma 18 (first case in \(u_k \) and \(\overline{u}_k \)), Theorem 3 (second case), Lemma 21 (third case), Theorem 4 (fourth case), Corollary 3 (fifth case), Lemma 19 (first case in \(v_k \) and \(\overline{v}_k \)), Theorem 3 (second case), Lemma 20 (third case), Lemma 20 (fourth case) and Corollary 3 (fifth case). The \(m \) in the preceding lemmas and theorems coincides with \(f_k + j \) in Theorem 5 while the meanings of the symbols \(k, i, n \) are not necessarily the same between them.

\(\blacksquare \)
Figure 1: Tiling for $H_{m,n}$

5 Padé approximation

Let $\varphi = \varphi_0 \varphi_1 \varphi_2 \cdots$ be an infinite sequence over a field K, $\hat{H}_{n,m} := H_{n,m}(\varphi)$ be the Hankel determinant (3), and $\varphi(z)$ the formal Laurent series (4) with $h = -1$. We also denote the **Hankel matrices** by

\[
\hat{M}_{n,m} := (\varphi_{n+i+j})_{i,j=0,1,\ldots,m-1}
\]

so that $\hat{H}_{n,m} = \det \hat{M}_{n,m}$.

The following proposition is well known ([1], for example). But we give a proof for self-containedness.

Proposition 1

(1) For any $m = 1, 2, \cdots$, a Padé pair (P, Q) of order m for φ exists. Moreover, for each m, the rational function $P/Q \in K(z)$ is determined uniquely for such Padé pairs (P, Q).

(2) For any $m = 1, 2, \cdots$, m is a normal index for φ if and only if $\hat{H}_{0,m}(\varphi) \neq 0$.

37
Proof. Let
\[
P = p_0 + p_1 z + p_2 z^2 + \cdots + p_m z^m
\]
\[
Q = q_0 + q_1 z + q_2 z^2 + \cdots + q_m z^m.
\]
Then, the condition \(\| Q \varphi - P \| < \exp(-m) \) is equivalent to
\[
\begin{array}{cccc}
p_m \varphi_0 & -p_m & = & 0 \\
q_m \varphi_0 & -p_m-1 & = & 0 \\
\cdot & \cdot & \cdot & \cdot \\
q_0 \varphi_0+ & q_1 \varphi_1+ & \cdots & q_m \varphi_{m-1} - p_0 = 0 \\
\cdot & \cdot & \cdot & \cdot \\
q_0 \varphi_{m-1}+ & q_1 \varphi_{m-2}+ & \cdots & q_m \varphi_{2m-1} = 0.
\end{array}
\]
Furthermore, Equation (26) for \((q_0q_1 \cdots q_m)\) is equivalent to
\[
(q_0q_1 \cdots q_{m-1}) \tilde{M}_{0,m} + q_m (\varphi_m \varphi_{m+1} \cdots \varphi_{2m-1}) = (00 \cdots 0),
\]
where \((p_0p_1 \cdots p_m)\) is determined by \((q_0q_1 \cdots q_m)\) by the upper half of Equation (26). There are two cases.

Case 1: \(\hat{H}_{0,m} = 0 \). In this case, since \(\det \tilde{M}_{0,m} = \hat{H}_{0,m} = 0 \), there exists a nonzero vector \((q_0q_1 \cdots q_{m-1})\) such that \((q_0q_1 \cdots q_{m-1}) \tilde{M}_{0,m} = 0 \). Then, Equation (27) is satisfied with this \((q_0q_1 \cdots q_{m-1})\) and \(q_m = 0 \).

Case 2: \(\hat{H}_{0,m} \neq 0 \). In this case, since \(\det \tilde{M}_{0,m} = \hat{H}_{0,m} \neq 0 \), there exists a unique vector \((q_0q_1 \cdots q_{m-1})\) such that
\[
(q_0q_1 \cdots q_{m-1}) \tilde{M}_{0,m} = -(\varphi_m \varphi_{m+1} \cdots \varphi_{2m-1}).
\]
Then, (27) is satisfied with this \((q_0q_1 \cdots q_{m-1})\) and \(q_m = 1 \).

Thus, a Padé pair of order \(m \) exists. Moreover, by the above arguments, a Padé pair \((P, Q)\) of order \(m \) with \(\deg Q < m \) exists if and only if \(\hat{H}_{0,m} = 0 \), since if \(\hat{H}_{0,m} \neq 0 \), then by (27), \(q_m = 0 \) implies \((q_0q_1 \cdots q_{m-1}) = (00 \cdots 0) \) and hence, \(Q = 0 \).

Now we prove that for any Padé pairs \((P, Q)\) and \((P', Q')\) of order \(m \), it holds \(P/Q = P'/Q' \). By (5), we have
\[
\| \varphi - P/Q \| < \exp(-n - \deg Q)
\]
and
\[\| \varphi - P'/Q' \| \leq \exp(-m - \deg Q'). \]

Hence, we have
\[\| P/Q - P'/Q' \| \leq \exp(-m - \deg Q \land \deg Q'). \]

Therefore,
\[\| PQ' - P'Q \| \leq \exp(-m + \deg Q \lor \deg Q') \leq 1. \]

Since \(PQ' - P'Q \) is a polynomial of \(z \), \(\| PQ' - P'Q \| \) is either 0 or not less than 1. Hence, the above inequality implies \(PQ' - P'Q = 0 \), which completes the proof.

In view of (26), without loss of generality, we can put
\[
P = p_0 + p_1 z + p_2 z^2 + \cdots + p_{m-1} z^{m-1},
\]
\[
Q = q_0 + q_1 z + q_2 z^2 + \cdots + q_m z^m. \tag{29}
\]

Theorem 6 Let \((P, Q)\) be the normalized Padé pair for \(\varphi \) with \(\deg Q \) as its normal index \(m \) with \(P, Q \) given by (29). Then, we have
\((1) \ Q(z) = \tilde{H}_{0,m}^{-1} \det(z \tilde{M}_{0,m} - \tilde{M}_{1,m}). \)
\((2) \ \det(zI - \tilde{M}_{0,m}) = \)
\[
\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
p_0 & \cdots & p_m & q_0 & \cdots & q_{m-1} \\
p_0 & \cdots & p_{m-2} & p_m & q_1 & \cdots & q_{m-1} \\
p_0 & \cdots & p_{m-3} & p_{m-1} & q_2 & \cdots & q_{m-1} \\
p_0 & \cdots & p_{m-4} & p_{m-2} & q_3 & \cdots & q_{m-1} \\
p_0 & \cdots & p_{m-5} & p_{m-3} & q_4 & \cdots & q_{m-1} \\
p_0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
p_0 & \cdots & p_{m-1} & q_{m-2} & q_{m-1} & 1 \\
p_0 \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
p_0 & \cdots & p_{m-2} & q_m & 1 \\
p_0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
p_0 & p_m & q_0 & q_1 & q_2 & \cdots & 1 \\
p_0 & p_m & q_0 & q_1 & q_2 & \cdots & 1 \\
p_0 & p_m & q_0 & q_1 & q_2 & \cdots & 1 \\
p_0 & p_m & q_0 & q_1 & q_2 & \cdots & 1 \\
p_0 & p_m & q_0 & q_1 & q_2 & \cdots & 1 \\
\end{array}
\]
where I is the unit matrix of size m.

(3)
\[\hat{H}_{0,m} = (-1)^{[m/2]} \prod_{z:Q(z)=0} P(z) = (-1)^{[m/2]} p_k^m \prod_{z:P(z)=0} Q(z), \]

where $\prod_{z:R(z)=0}$ denotes the product over all the roots of the polynomial $R(z)$ with their multiplicity and p_k is the leading coefficient of $P(z)$, that is, $p_{m-1} = \cdots = p_{k+1} = 0$, $p_k \neq 0$ if $P(z)$ is not the zero polynomial, otherwise, $p_k = 0$.

Proof. (1) Note that $q_m = 1$ by the assumption that (P, Q) is the normalized Padé pair. By (28), we have

\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & \ddots & 0 & 1 \\
-\phi_0 & -q_1 & \cdots & -q_{m-2} & -q_{m-1} \\
\end{pmatrix}
\hat{M}_{0,m} = \hat{M}_{1,m}.
\]

Since $\hat{H}_{0,m} = \det \hat{M}_{0,m} \neq 0$ by the normality of the index m, it follows that

\[
Q(z) = \det \left(zI - \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & \ddots & 0 & 1 \\
-\phi_0 & -q_1 & \cdots & -q_{m-2} & -q_{m-1} \\
\end{pmatrix}\right)
= \det(zI - \hat{M}_{1,m} \hat{M}_{0,m}^{-1})
= \hat{H}_{0,m}^{-1} \det(z \hat{M}_{0,m} - \hat{M}_{1,m}).
\]
(2) We define the matrices:

\[P_m := \begin{pmatrix} p_{m-1} & p_{m-2} & \cdots & p_1 & p_0 \\ p_{m-2} & \cdots & \cdots & p_0 \\ \vdots & \ddots & \ddots & \vdots \\ p_1 & \ddots & 0 \\ p_0 \end{pmatrix} \]

\[P'_{m-1} := \begin{pmatrix} 0 & p_{m-1} & p_{m-2} \\ p_{m-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ p_{m-1} & p_{m-2} & \ddots & p_2 \\ p_{m-1} & p_{m-2} & \ddots & p_1 \end{pmatrix} \]

\[Q_m := \begin{pmatrix} 1 & 1 & 0 \\ q_{m-1} & 1 & \vdots \\ \vdots & \ddots & \ddots \\ q_1 & q_2 & \cdots & q_{m-1} & 1 \end{pmatrix} \]

\[Q'_m := \begin{pmatrix} 0 & 1 & q_{m-1} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 1 & q_{m-1} & \cdots & q_2 & q_1 \end{pmatrix} \]

\[Q''_{m-1} := \begin{pmatrix} 1 & q_{m-1} & 0 \\ q_{m-1} & 1 & \vdots \\ \vdots & \ddots & \ddots \\ q_2 & q_3 & \cdots & q_{m-1} & 1 \end{pmatrix} \]
\[
Q_{m,m-1} := \begin{pmatrix}
q_1 & q_2 & \cdots & q_{m-2} & q_{m-1} \\
\varphi_0 & q_1 & \cdots & q_{m-3} & q_{m-2} \\
\varphi_0 & q_1 & \cdots & q_{m-3} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & q_1 & \varphi_0 & q_0
\end{pmatrix}
\]

\[
\phi_{m-1} := \begin{pmatrix}
0 & \varphi_0 & \varphi_1 \\
\ddots & \ddots & \vdots \\
\ddots & \ddots & \ddots & \ddots & \varphi_{m-3} \\
\varphi_0 & \varphi_1 & \cdots & \varphi_{m-3} & \varphi_{m-2}
\end{pmatrix}
\]

We denote by \(O \) the zero matrices of various sizes. We also denote by \(I_n \) the unit matrix of size \(n \). By (26), we have

\[
\det(zI - \hat{M}_{0,m}) = \det(z\begin{pmatrix} O & O \\ O & I_m \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m}^{-1}Q_{m,m-1} & \hat{M}_{0,m} \end{pmatrix})
\]

\[
= \det\left(z\begin{pmatrix} O & O \\ O & I_m \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m}^{-1}Q_{m,m-1} & \hat{M}_{0,m} \end{pmatrix}\right)
\]

\[
= \det\left(z\begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & Q_{m}\hat{M}_{0,m} \end{pmatrix}\right)
\]

\[
= \det\left(z\begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & Q_{m}\hat{M}_{0,m} \end{pmatrix}\right)\begin{pmatrix} I_{m-1} & O \phi_{m-1} \\ O & I_m \end{pmatrix}
\]

\[
= \det\left(z\begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & P_{m} \end{pmatrix}\right),
\]

where we use (26) to get the last equality. Hence

\[
\det(zI - \hat{M}_{0,m}) = \det\left(z\begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & P_{m} \end{pmatrix}\right)
\]

\[
= \det\left(z\begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & P_{m} \end{pmatrix}\right)
\]

\[
= \det\left(z\begin{pmatrix} Q_{m-1}^{-1} & O \\ O & I_m \end{pmatrix}\begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & P_{m} \end{pmatrix}\right)
\]

42
\[= \det \left(z \begin{pmatrix} O & O \\ O & Q_m \end{pmatrix} - \begin{pmatrix} -Q'_m & O \\ Q_m & P_m \end{pmatrix} \right) \]
\[= (-1)^m \det \left(\begin{pmatrix} Q'_m & O \\ Q_m & P_m \end{pmatrix} - z \begin{pmatrix} O & O \\ O & Q_m \end{pmatrix} \right) \]
\[= (-1)^m \det \left(\begin{pmatrix} I_m & O \\ Q'_m & Q_m \end{pmatrix} - zI_m \right), \]
which implies (2).

(3) By (2), we have
\[\hat{H}_{0,m} = (-1)^m \det (0I - \hat{M}_{0,m}) \]
\[= (-1)^{m/2} \begin{bmatrix} p_{m-1} & 1 \\ p_{m-2} & p_{m-1} \\ \vdots & \ddots \\ p_1 & \cdots & p_{m-1} & q_{m-1} \\ p_0 & \cdots & p_{m-2} & p_{m-1} & q_{1} & q_{m-1} \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ p_0 & p_1 & \cdots & q_1 \\ p_0 & q_0 \end{bmatrix}, \]
which completes the proof since the determinant in the last-side in the above equality is Sylvester’s determinant for \(P(z) \) and \(Q(z) \).

For a finite or infinite sequence \(a_0(z), a_1(z), a_2(z), \ldots \) of elements in \(K((z^{-1})) \), we use the notation
\[[a_0(z); a_1(z), a_2(z), \ldots, a_n(z)] := a_0(z) + \frac{1}{a_1(z) + \frac{1}{a_2(z) + \cdots + \frac{1}{a_n(z)}}} \]
and
\[[a_0(z); a_1(z), a_2(z), \ldots] := \lim_{n \to \infty} [a_0(z); a_1(z), a_2(z), \ldots, a_n(z)] \quad (30) \]
provided that the limit exists, where the limit is taken with respect to the metric induced by the non-Archimedean norm in $\mathbf{K}((z^{-1}))$.

We define

\[
p_0(z) = a_0(z), \quad p_{-1}(z) = 1, \quad q_0(z) = 1, \quad q_{-1}(z) = 0
\]

\[
p_n(z) = a_n(z)p_{n-1}(z) + p_{n-2}(z)
\]

\[
q_n(z) = a_n(z)q_{n-1}(z) + q_{n-2}(z)
\]

\[(n = 1, 2, 3, \cdots)\] (31)

for any given sequence $a_1(z), a_2(z), \cdots \in \mathbf{K}((z^{-1}))$. Then $p_n(z), q_n(z) \in \mathbf{K}((z^{-1}))$, $p_n(z) \neq 0$ if $q_n(z) = 0$, and

\[
\frac{p_n(z)}{q_n(z)} = [a_0(z); a_1(z), a_2(z), \cdots, a_n(z)] \in \mathbf{K}((z^{-1})) \cup \{\infty\} \quad (n \geq 0)
\]

holds, where we mean $\psi/0 := \infty$ for $\psi \in \mathbf{K}((z^{-1})) \setminus \{0\}$, and $\psi + \infty := \infty$, $\psi/\infty := 0$ for $\psi \in \mathbf{K}((z^{-1}))$. By using (31), it can be shown that the limit (30) always exists in the set $\mathbf{K}((z^{-1}))$ as far as

\[
a_n(z) \in \mathbf{K}[z] \quad (n \geq 0), \quad \deg a_n(z) \geq 1 \quad (n \geq 1). \quad (32)
\]

For $\varphi(z) \in \mathbf{K}((z^{-1}))$ given by (4), we denote by $[\varphi(z)]$ the polynomial part of $\varphi(z)$, which is defined as follows:

\[
[\varphi(z)] := \sum_{k=0}^{h} \varphi_h z^{-k+h} \in \mathbf{K}[z].
\]

By T, we denote the mapping $T : \mathbf{K}((z^{-1})) \setminus \{0\} \to \mathbf{K}((z^{-1}))$ defined by

\[
T(\psi(z)) := \frac{1}{\psi(z)} - [\frac{1}{\psi(z)}] \quad (\psi(z) \in \mathbf{K}((z^{-1})) \setminus \{0\}).
\]

Then, for any given $\varphi(z) \in \mathbf{K}((z^{-1}))$, we can define the continued fraction expansion of $\varphi(z)$:

\[
\varphi(z) = \begin{cases}
[a_0(z); a_1(z), a_2(z), \cdots, a_{N-1}(z)] & \text{if } \varphi(z) \in \mathbf{K}(z) \\
[a_0(z); a_1(z), a_2(z), a_3(z), \cdots] & \text{otherwise}
\end{cases} \quad (33)
\]

with $a_n(z)$ satisfying (32) according to the following algorithm.
Continued Fraction Algorithm:

\[a_0(z) = \lfloor \varphi(z) \rfloor, \quad a_n(z) = \left\lfloor \frac{1}{T_{n-1}(\varphi(z) - a_0(z))} \right\rfloor \]

\[N = N(\varphi(z)) := \inf \{ m ; T_{m-1}(\varphi(z)) = 0 \} \quad (\inf \emptyset := \infty). \]

We note that if \(\varphi(z) \in K(z) \), then \(N < \infty \); if \(\varphi(z) \in K((z^{-1})) \setminus K(z) \), then \(N = \infty \) and the continued fraction (33) converges to the given \(\varphi(z) \in K(z) \).

We say a continued fraction is admissible if it is obtained by the algorithm. We remark that a continued fraction (33) is admissible if and only if (32) holds.

The following proposition is known [2], but we give a proof for completeness.

Proposition 2 The set of all \(P/Q \in K(z) \) for Padé pairs \((P,Q)\) for \(\varphi(z) \in K((z)) \) coincides with the set of convergents \(p_n(z)/q_n(z) \) \((0 \leq n < N)\) of the continued fraction expansion of \(\varphi(z) \). Moreover, \(m \) is a normal index if and only if \(m \) is a degree of \(q_n(z) \) for some \(n = 0, 1, 2, \ldots \) (with \(n < N \) if \(\varphi(z) \in K(z) \)).

Proof. Note that

\[\varphi(z) = \frac{(a_n(z) + T^n(\varphi(z) - a_0(z)))p_{n-1}(z) + p_{n-2}(z)}{(a_n(z) + T^n(\varphi(z) - a_0(z)))q_{n-1}(z) + q_{n-2}(z)} \]

\[(-1)^n = p_{n-1}(z)q_{n-2}(z) - p_{n-2}(z)q_{n-1}(z). \]

Hence, we have

\[\| q_n(z)\varphi(z) - p_n(z) \| \]

\[= \left\| \frac{(-1)^n T^n(\varphi(z) - a_0(z))}{q_n(z) + T^n(\varphi(z) - a_0(z))q_{n-1}(z)} \right\| \]

\[= \exp(-\deg a_{n+1}(n) - \deg q_n(z)), \]

so that

\[\| q_n(z)\varphi(z) - p_n(z) \| < \exp(-\deg q_n(z)) \quad (n < N). \quad (34) \]

In the case \(N < \infty \), the left-hand side of (34) turns out to be 0 for \(n = N - 1 \). Therefore, \((p_n(z), q_n(z)) \) is a Padé pair of order \(m = \deg q_n(z) \) for all \(m \in \{ \deg q_n(z) ; 0 \leq n < N \} \).
Conversely, for any $k = 1, 2, \cdots$, let (P, Q) be a Padé pair of order k. Let \(\deg q_n(z) \leq k < \deg q_{n+1} \) for some $n = 0, 1, 2, \cdots$ with $n < N$ (\(\deg q_N(z) := \infty \)). Then, since $\deg Q \leq k < \deg q_{n+1}$, it follows from (34) that

\[
\| \varphi(z) - \frac{p_n(z)}{q_n(z)} \| = \exp(-\deg q_n(z) - \deg q_{n+1}(z)) \\
< \exp(-\deg q_n(z) - \deg Q).
\]

Since (P, Q) be a Padé pair of order k, we have

\[
\| \varphi(z) - \frac{P}{Q} \| < \exp(-k - \deg Q) \\
\leq \exp(-\deg q_n(z) - \deg Q).
\]

Therefore, we have

\[
\| \frac{P}{Q} - \frac{p_n(z)}{q_n(z)} \| < \exp(-\deg q_n(z) - \deg Q).
\]

On the other hand, if $P/Q \neq p_n(z)/q_n(z)$, then

\[
\| \frac{P}{Q} - \frac{p_n(z)}{q_n(z)} \| = \| \frac{Pq_n(z) - Qp_n(z)}{Qq_n(z)} \| \\
\geq \exp(-\deg q_n(z) - \deg Q),
\]

which is a contradiction. Thus we have $P/Q = p_n(z)/q_n(z)$.

Note that $p_n(z)/q_n(z)$ is irreducible for any $n = 1, 2, \cdots$ with $n < N$, since $p_nq_{n-1} - p_{n-1}q_n = (-1)^{n-1}$. Let $m = \deg q_n(z)$ for some $n = 1, 2, \cdots$ with $n < N$. Take any Padé pair (P, Q) of order m. Then $\deg Q \leq m$. On the other hand, by the above argument, we have $P/Q = p_n(z)/q_n(z)$. Since $p_n(z)/q_n(z)$ is irreducible, this implies that $\deg Q \geq \deg q_n(z) = m$. Thus, m is a normal index.

Conversely, let $m \geq 0$ be any normal index. Take any Padé pair (P, Q) of order m. Then, by the above argument, there exists $n = 0, 1, 2, \cdots$ with $n < N$ such that $P/Q = p_n(z)/q_n(z)$. Hence the irreducibility of $p_n(z)/q_n(z)$ implies $\deg q_n(z) \leq \deg Q(\leq m)$. Hence, $(p_n(z), q_n(z))$ is a Padé pair of order m. Since m is a normal index, $\deg q_n(z) = m$. ■
Let us obtain the continued fraction expansions for
\[
\varphi_\varepsilon(z) = \hat{\varepsilon}_0 z^{-1} + \hat{\varepsilon}_1 z^{-2} + \hat{\varepsilon}_2 z^{-3} + \cdots \in \mathbb{Q}((z^{-1}))
\]
corresponding to the Fibonacci words \(\varepsilon = \varepsilon(a, b) \) with \((a, b) = (1, 0)\) and \((a, b) = (0, 1)\). As in §3, we use the notations \(\varepsilon \) and \(\overset{\sim}{\varepsilon} \) for them. The proofs in the following theorems are given only for \(\varepsilon \), since the proof is similar for \(\overset{\sim}{\varepsilon} \).

In [3], J. Tamura gave the Jacobi-Perron-Parusnikov expansion for a vector consisting of Laurent series with coefficients given by certain substitutions, which contains the following as its special case, cf. the footnote, p. 301 [3]:

Proposition 3 It holds that
\[
(z - 1)\varphi_\varepsilon(z) = [0; z; z; z + 1; z; z + 1; z; z + 1; \cdots].
\]

Theorem 7 We have the following admissible continued fraction for \(\varphi_\varepsilon(z) \) and \(\varphi_{\overset{\sim}{\varepsilon}}(z) \):
\[
\begin{align*}
\varphi_\varepsilon(z) &= [0; a_1, a_2, a_3, \cdots] \\
\varphi_{\overset{\sim}{\varepsilon}}(z) &= [0; \overline{a}_1, \overline{a}_2, \overline{a}_3, \cdots]
\end{align*}
\]
with
\[
a_1 = z, \quad a_2 = -z + 1, \quad a_3 = \frac{1}{2}(z + 1)
\]
\[
a_{2n+2} = (-1)^{n-1} f_n^2 (z f_n - 1 + z f_{n-2} + \cdots + 1)
\]
\[
a_{2n+3} = (-1)^{n-1} \frac{1}{f_n f_{n+1}} (z - 1)
\]
\[\quad (n = 1, 2, \cdots),\]
and
\[
\begin{align*}
\overline{a}_1 &= z^2, \quad \overline{a}_2 = -z, \\
\overline{a}_{2n+1} &= (-1)^{n-1} f_n^2 (z f_n - 1 + z f_{n-2} + \cdots + 1) \\
\overline{a}_{2n+2} &= (-1)^{n-1} \frac{1}{f_n f_{n-1}} (z - 1)
\end{align*}\]
\[\quad (n = 1, 2, \cdots).\]
Proof. We put

\[
\begin{align*}
\theta_n &:= [0 ; \ z^{f_n}, z^{f_{n+1}}, z^{f_{n+2}}, \ldots] \quad (n \geq -2) \\
\xi_n &:= (-1)^{n-1} \frac{f_n^2 z^{f_n} + f_{n-1} f_n + f_{n+1}^2 \theta_{n+1}}{z-1} \quad (n \geq 1) \\
\eta_n &:= (-1)^{n-1} \frac{z-1}{f_n f_{n+1} + f_{n+1}^2 \theta_{n+1}} \quad (n \geq 1) \\
c_n &:= (-1)^{n-1} f_n^2 (z^{f_n-1} + z^{f_n-2} + \ldots + 1) \quad (n \geq 1) \\
d_n &:= (-1)^{n-1} \frac{1}{f_n f_{n+1}} (z-1) \quad (n \geq 1).
\end{align*}
\]

Then we have

\[
\xi_n = [c_n ; \eta_n] = c_n + \frac{1}{\eta_n}, \quad \eta_n = [d_n ; \xi_n] \quad \text{(35)}
\]

Using

\[
\theta_n^{-1} = z^{f_n} + \theta_{n+1}
\]

and Proposition 3, we get

\[
\varphi(z) = \frac{z - \theta_{-2}}{z - 1} \quad (\| z^{-2}/(z - 1) \| < 1)
\]

\[
= [0 ; (z - 1) \theta_{-2}^{-1}]
\]

\[
= [0 ; z - 1 + (z - 1) \theta_{-1}] \quad (\| -1 + (z - 1) \theta_{-1} \| < 1)
\]

\[
= [0 ; z, \frac{\theta_{-1}^{-1}}{-\theta_{-1}^{-1} + z - 1}]
\]

\[
= [0 ; z, \frac{z + \theta_0}{-1 - \theta_0}]
\]

\[
= [0 ; z, -z + 1 + \frac{1 + (z + 2) \theta_0}{-1 - \theta_0}]
\]

\[
\quad (\| \frac{1 + (z + 2) \theta_0}{-1 - \theta_0} \| < 1)
\]

\[
= [0 ; z, -z + 1, \frac{-1 - \theta_0^{-1}}{-z + 2 + \theta_0^{-1}}]
\]

\[
= [0 ; z, -z + 1, \frac{-z - 1 - \theta_1}{2 + \theta_1}]
\]
\[
\begin{align*}
= \left[0 ; z, \ -z + 1, \ -\frac{1}{2}(z + 1), \ \frac{4\theta_1^{-1} + 2}{z - 1} \right] \\
= \left[0 ; z, \ -z + 1, \ -\frac{1}{2}(z + 1), \ \frac{4z + 2 + 4\theta_2}{z - 1} \right].
\end{align*}
\]

Hence, we have
\[
f(z) = \left[0 ; z, \ -z + 1, \ -\frac{1}{2}(z + 1), \ \xi_1 \right] \quad \text{(||} \xi_1^{-1} || < 1). \quad (36)
\]

From (35) and (36), it follows that
\[
f(z) = \left[0 ; z, \ -z + 1, \ -\frac{1}{2}(z + 1) \ c_1, \ d_1, \ \cdots, \ c_n, \ d_n, \ \xi_{n+1} \right] \\
= \left[0 ; z, \ -z + 1, \ -\frac{1}{2}(z + 1) \ c_1, \ c_2, \ d_2, \ \cdots \right]
\]
which completes the proof for \(\varphi(z) \).

Starting from the identity \(\varphi(z) = \frac{1-\theta_2}{z-1} \) instead of \(\varphi(z) = \frac{\theta_2}{z-1} \), we can get the admissible continued fraction for \(\varphi(z) \) by the similar fashion as above.

\textbf{Theorem 8} The numerator \(p_n := p_n(z) \) (\(\overline{p}_n := \overline{p}_n(z) \), resp.) and the denominator \(q_n := q_n(z) \) (\(\overline{q}_n := \overline{q}_n(z) \), resp.) of the \(n \)-th convergent of the continued fraction expansion for \(\varphi(z) \) (and \(\varphi(z) \), resp.) are given as follows:

\[
\begin{align*}
p_0 &= 0, \quad p_1 = 1, \quad p_2 = -z + 1 \\
q_0 &= 1, \quad q_1 = z, \quad q_2 = -z^2 + z + 1 \\
p_{2n-1} &= \frac{1}{f_n} \left(\varepsilon_0 z^{f_{n-1}} + \varepsilon_1 z^{f_{n-2}} + \cdots + \varepsilon_{f_{n-1}} \right) \\
p_{2n} &= (-1)^n \left\{ f_n \left(\varepsilon_0 z^{f_{n-1}} + \varepsilon_1 z^{f_{n-2}} + \cdots + \varepsilon_{f_{n-1}} \right) - f_{n-1} \left(\varepsilon_0 z^{f_{n-1}} + \varepsilon_1 z^{f_{n-2}} + \cdots + \varepsilon_{f_{n-1}} \right) \right\} / (z - 1) \\
q_{2n-1} &= \frac{1}{f_n} (z^{f_n} - 1) \\
q_{2n} &= (-1)^n \left\{ f_n \left(z^{f_{n-1}} + z^{f_{n-2}} + \cdots + 1 \right) - f_{n-2} \left(z^{f_{n-1}} + z^{f_{n-2}} + \cdots + 1 \right) \right\} / (z - 1) \\
(& n = 2, 3, \cdots)
\end{align*}
\]
and
\[
\begin{align*}
\overline{p}_0 &= 0, \quad \overline{p}_1 = 1 \\
\overline{q}_0 &= 1, \quad \overline{q}_1 = z^2 \\
\overline{p}_{2n-2} &= -\frac{1}{f_{n-2}} (\overline{p}_0 z^{f_{n-1}} + \overline{p}_1 z^{f_{n-2}} + \cdots + \overline{p}_{f_{n-1}-1}) \\
\overline{p}_{2n-1} &= (-1)^{n-1} \left\{ f_{n-2} z^{f_{n-1}} (\overline{p}_0 z^{f_{n-1}} + \overline{p}_1 z^{f_{n-2}} + \cdots + \overline{p}_{f_{n-1}-1}) \
- f_{n-3} (\overline{p}_0 z^{f_{n-1}} + \overline{p}_1 z^{f_{n-2}} + \cdots + \overline{p}_{f_{n-1}-1}) \right\} \frac{1}{(z - 1) + f_{n-2}} \\
\overline{q}_{2n-2} &= -\frac{1}{f_{n-2}} (z^{f_{n}} - 1) \\
\overline{q}_{2n-1} &= (-1)^{n-1} \left\{ f_{n-2} z^{f_{n-1}} (z^{f_{n-1}} + z^{f_{n-2}} + \cdots + 1) \
- f_{n-3} (z^{f_{n-1}} + z^{f_{n-2}} + \cdots + 1) \right\} \quad (\ n = 2, 3, \cdots) ,
\end{align*}
\]

where \(p_{2n} \) and \(\overline{p}_{2n-1} \) in the above are polynomials since the numerators are divisible by \(z - 1 \).

Proof. The values for \(p_0, p_1, p_2, q_0, q_1, q_2 \) are obtained from Theorem 7 by direct calculations. For a general \(n \), we can prove the formula for \(p_n, q_n \) by induction on \(n \) using (31) and Theorem 7 without difficulty.

Remark 4 From Proposition 2 and Theorem 8, it follows that the set of normal indices for \(\varphi(z) \) (and \(\varphi(z) \) resp.) is \(\{0, f_0 = f_1 - 1, f_1 = f_2 - 1, f_2 = f_3 - 1, \cdots \} \) (\(\{0, f_1 = f_2 - 1, f_2 = f_3 - 1, \cdots \} \), resp.) which together with Proposition 1 give another proof of the third cases of Theorem 2 with \(n = 0 \).

Remark 5 In [4], the continued fraction expansion for Laurent series corresponding to infinite words over \(\{a, b\} \) generated by substitutions of “Fibonacci type” are considered, where \(a, b \) will be considered as independent variables.

References

Subject classification: 41A21, 11B39