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1 Introduction

The aim of the paper is to give a concrete and interesting example of the
Padé approximation theory as well as to develop the general theory so as to
find a quantitative relation between the Hankel determinant and the Padé
pair. Our example is the formal power series related to the Fibonacci word.

The Fibonacci word £(«a, b) on an alphabet {a, b} is the infinite sequence

5(@,6) = éoélén
:= abaababaabaab- - -

(én € {a,0}) (1)

which is the fixed point of the substitution

a — ab (2)

o
b — a
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The Hankel determinants for an infinite word (or sequence) ¢ =
wop12 - (on € K) over a field K are the following

Hy (@) = det(@nyit))o<ij<m—1 3)
(n=0,1,2,---; m=1,2,---).

It is known [2] that the Hankel determinants play an important role in
the theory of Padé approximation for the formal Laurent series

o(2) = i op (1)

Let K((271)) be the set of formal Laurent series ¢ as above of z with co-
efficients in K and h € Z providing a non-Archimedean norm || ¢ ||:=
exp(—ko+h) with ko = inf{k; ¢ # 0}. Let ¢ be as above with h = —1. We
say that a pair (P,Q) € K][z]* of polynomials of z over K is a Padé pair
of order m for ¢ if

| Qe — P ||[<exp(—m), Q#0, deg@Q<m. (5)

A Padé pair (P, Q) of order m for ¢ always exists and the rational function
P/Q € K(z) is uniquely determined for each m = 0,1,2,---. The element
P/Q € K(z) with P, satisfying (5) is called the m-th diagonal Padé
approximation for . A number m is called a normal index if (5) implies
deg @ = m. Note that P/@ is irreducible if m is a normal index, although
it can be reducible for a general m. A normal Padé pair (P, Q), i.e., deg ()
is a normal index, is said to be normalized if the leading coefficient of @) is
equal to 1. It is a classical result that m is a normal index for ¢ if and only if
the Hankel determinant det(yiy;)o<ij<m—1 is nonzero. Note that 0 is always
a normal index and the determinant for the empty matrix is considered as
1, so that the above statement remains valid for m = 0.

We succeed in obtaining a quantitative relation between the Hankel de-
terminant and the normalized Padé pair. Namely,

det(piri)ocijem = (=) T P(2) (6)
z;Q(2)=0
for any normal index m with the normalized Padé pair (P, @), where ]
z;Q(2)=0
indicates a product taken over all zeroes z of () with their multiplicity

(Theorem 6).



We are specially interested in the Padé approximation theory applied to
the Fibonacci words ¢ := £(1,0) and & := (0, 1), where 0, 1 are considered
as elements in the field Q, since we have the following remark.

Remark 1 Let M be a matriz of size m X m with entries consisting of two
independent variables a and b. Then, det M = (a —b)™ ' (pa + (—1)""1¢b),
where p and q are integers defined by

P = det M |a:1, b=0 -+ G = det M |a:0, h=1 -

Proof of Remark 1. Subtracting the first column vector from all the other
column vectors of M, we see that det M is divisible by (¢ — b)"! as a
polynomial in Z[a,b]. Hence, det M = (a — b)""!(za + yb) for integers z,y.
Setting (a,b) = (1,0), (0,1), we get the assertion.

In Section 2, we study the structures of the Fibonacci word, in particular,
its repetition property. The notion of singular words introduced in 7.-X.
Wen and Z.-Y. Wen [5] plays an important role.

In Section 3, we give the value of the Hankel determinants H, ,,(¢) and
H,, (%) for the Fibonacci words in some closed forms. It is a rare case where
the Hankel determinants are determined completely. Another such case is
for the Thue-Morse sequence ¢ consisting of 0 and 1, where the Hankel
determinants H,, (@) modulo 2 are obtained, and the function H,, ,(p) of
(m,n) is proved to be 2-dimensionally automatic (J.-P. Allouche, J. Peyriere,
7.-X. Wen and Z.-Y. Wen [1]).

In Section 4, we consider the self-similar property of the values H, ()
and H, ,,(Z) for the Fibonacci words. The quarter plane {(n,m);n > 0,m >
1} is tiled by 3 kinds of tiles with the values H,, ,,,(¢) and H,, ,,(Z) on it with
various scales.

In Section 5, we develop a general theory of Padé approximation. We also
obtain the admissible continued fraction expansion of . and @z, the formal
Laurent series (4) with h = —1 for the sequences ¢ and &, and determine
all the convergents py/qr of the continued fractions. It is known in general
that the set of the convergents pi/qr for ¢ is the set of diagonal Padé
approximations and the set of degrees of ¢;’s in z coincides with the set of
normal indices for .



2 Structures of the Fibonacci word

In what follows, o denotes the substitution defined by (2), and
é = éoélézén (én € {G,b})

is the (infinite) Fibonacci word (1). A finite word over {a,b} is sometimes
considered to be an element of the free group generated by a and b with
their inverses ¢™1 and b=!. For n = 0,1,2,---, we define the n-th Fibonacci
word F,, and the n-th singular word W, as follows:

F, :=c"(a) = o"t(b)

W, = ﬁnFnozgl, (7)
where we put
B ] oa (n:even, m:odd)

O = P = { b (n:odd, m :even), (8)
and we define W_5 to be the empty word and W_; := « for convenience.
Let (fn;n € Z) be the Fibonacci sequence:

fn+2:fn+1+fn (nEZ) (9)

Jsi=fo=1
Then, we have |F,| = |[W,| = f. (n > 0), where |{| denotes the length of

a finite word £.

For a finite word £ = &)1 ---&,-1 and a finite or infinite word n =
Non17e - - - over an alphabet, we denote
§<kn (10)
if € = menka1 - Mean—1. We simply denote
¢<n (11)

and say that ¢ is a subword of n if £ <3 1 holds for some k. For a finite
word ¢ = &oéy--- €21 and ¢ with 0 < ¢ < n, we denote the i-th cyclic
permutation of & by C;(€) 1= &&ipr -+ - &1y -+ - Ei—1. We also denote
Ci(&) := Cy(€) with ¢/ := 1 — n[i/n] for any 1 € Z.

In this section, we study the structure of the Fibonacci word € and discuss
the repetition property. The following two lemmas are obtained by 7.-X.
Wen and Z.-Y. Wen [5] and we omit the proofs.
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Lemma 1 We have the following statements (1)—(10):

(1) 2= BBy BBy Frg - (> 1),

(2) F,=F, 1 Fy sy =F, 2F, 13 'a B, (n > 2),

(3) Fof, < € (n>3),

(4) £ = W_ i WoW  WoWs - - )

(5) Wy, = W, oW, sW,_5 (n > 1),

(6) W, is a palindrome, that is, W, stays invariant under reading the
letters from the end (n > —2),

(7) Ci(Fn) <€ (n >0, 0<10< fo),

(8) Ci(F,) # C;(F,) for any 1 # j, moreover, they are different already
before their last places (n > 1, 0 <1i < f,),

(9) Wi # Ci(F) (n 20, 0<i < fo),

(10) € < & and |£| = f. imply that either £ = C;(F,) for some i with
0<i< f,oré=W, (n>0).

Lemma 2 For any k > —1, we have the decomposition of & as follows:
é = (W—1W0 te Wk—1)Wk’YOWk’Y1 te Wk% T,

where all the occurrences of Wy in € are picked up and ~, ts either Wyiy or
Wi_1 corresponding to é, is a or b, respectively. That is, any two different
occurrences of Wy do not overlap and are separated by Wiy, or Wi_q.

We introduce another method to discuss the repetition property of €. Let
N be the set of nonnegative integers. For n € N, let

n = i_oj Ti(n) f: (12)

=0

7(n) €40,1} and 7;(n)ripi(n) =0 (1 € N)

be the regular expression of n in the Fibonacci base due to Zeckendorf.
For m,n € N and a positive integer k, we denote

m=pn (13)
if 7:(m) = 7;(n) holds for all « < k.

Lemma 3 [t holds that £, = a if and only if To(n) = 0.



Proof. We use induction on n. The lemma holds for n = 0,1,2. Assume
that the lemma holds for any n € N with n < fi. for some k > 2. Take any
n € N with fr <n < fry1. Then, since 0 < n — fr < fr_1, we have n =
Zf;ol 7(n— fx)fi + fr, which gives the regular expression if 7,_;(n— fi) = 0.
If 7,—1(n — fi) = 1, then we have the regular expression n = k=2 mi(n —
fe)fi + fres1. In any case, we have 79(n) = 7o(n — fi). On the other hand,
since & starts with FiFj_; by Lemma 1, we have é, = &,_y,. Hence, £, = a
if and only if 79(n) = 0 by the induction hypothesis. Thus, we have the
lemma for any n < fxy1, and by induction, we complete the proof. [ ]

Lemmad4 Let n = Y2 n;f; with n; € {0,1}(: € N). Assume that
ninit1 =0 for 0 <i < k. Then, n; = 7i(n) holds for 0 <i < k.

Proof. 1f there exists ¢+ € N such that n;n;;; = 1, take the maximum ¢
for such ¢’s. Take the maximum j such that n;,41 = nij43 = N5 = -+ =
n; = 1. Then, replacing fi, + fi;+1 + fio+s + fig+s + -+ -+ f; by fj41, we have

a new expression of n:

Xy
n= 3 n; fi
=0
t0—1 [ee]
= ronfitfimt X onfi
1=0 1=7+3

This new expression is unchanged at the indices less than k, and is either
regular or has a smaller maximum index ¢ with the property nin; ; = 1. By
continuing this procedure, we finally get the regular expression of n, which
is unchanged at the indices less than k£ from the original expression. Thus,
we have n; = 7;(n) for any 0 <1 < k. [

Lemma 5 For anyn € N and k > 0, 7o(n + fi) # 70(n) holds if and only
if either n =py9 fro1 —2 orn =pyo frer — 1. Moreover,

& = { (=D a—=b) (0 =ps2 frr —2)
T (=D a = b) (n =gz frr1r — 1),

where a and b are considered as independent variables.

Proof. It E =0, we can verify Lemma 5 by a direct calculation.



Assume that k > 1 and 7,(n) = 0, then we have an expression of n + fj:

k—1 o]
n+ fi=Y mnn)fi+ fi+ > mn)fi.
=0 i=hg 1

Then by Lemma 4, we have 7o(n + fx) = 7o(n) if & > 2 or if k = 1 and
T0(n) = 0. In the case where k = 1, 79(n) = 1 and m2(n) = 0, since

n‘|‘fk :1+2+§:Ti(n)fi :fg—l—in(n)ﬁ,

1=3

we have 79(n + fi) = 0 by Lemma 4. On the other hand, in the case where
k=1, 7o(n) =1 and m5(n) = 1, since

n+fk:1+2+3+Zn(n)ﬁ:fo+f3+§jn(n)fi,

1=4

we have 79(n + fi) = 1 by Lemma 4.

Thus, in the case where k& > 1 and 7(n) = 0, 7o(n + fi) # 70(n) if
and only if k = 1, 79(n) = 1 and m(n) = 0, or equivalently, if and only if
n =ga2 fre1 — 2. Note that n =;y1 fry1 — 1 does not happen in this case.

Now assume that £ > 1 and 7,(n) = 1. Take the minimum j > 0 such that
Te(n) = Tp—a(n) = 7h—a(n) = --- = 75(n) = 1. Then since 2f; = fiy1 + fi—2
for any ¢ € N, we have an expression of n + fi:

n+ fr= JZ_:BTz(n)fz + fi—2
i=0 o (14)

v+ fis+ fis o+ fen + i_%z Ti(n) f:
where the first term in the right-hand side vanishes if 7 = 0,1,2. Hence by
Lemma 4, 7o(n + fi) = 7o(n) if j > 4.

In the case where j = 3, 7o(n+ fi) = 70(n) holds if 79(n) = 0 by (14) and
Lemma 4. If 79(n) = 1, then by (14) and Lemma 4, 79(n + fi) = 0. Thus,
in the case where j = 3, 7o(n + fi) # 70(n) if and only if 7o(n) = 1.

If 7 = 2, then by the assumption on j, we have 79(n) = 0. On the other
hand, since fo = 1, by (14) and Lemma 4, we have 7o(n + fi) = 1. Thus,
To(n + f) # To(n).



If j = 1, then we have 79(n) = 0 since 7y(n) = 1 by the assumption on
J. On the other hand, since f_; = 1, we have 7o(n + f;) = 1 by (14) and
Lemma 4. Thus, 7o(n + fi) # 10(n).

If j = 0, then by the assumption on j, 7o(n) = 1. On the other hand,
since f_o = 0, we have 9(n + fr) = 0 by (14) and Lemma 4. Thus,

To(n + f) # To(n).
By combining all the results as above, we get the first part.
The second part follows from Lemma 3 and the fact that for any k& > 0,

Jevi = 1= fo+ feea +-- + [
with ¢ = 0 if k is even and ¢« = 1 if £ is odd. Hence,

a k:odd, h:even
To(frr1 —1) = 1o(fap1 — 2) = { b Ek ceven, h: Odd)).

Lemma 6 For any k > 0, Wy <, € if and only if n =py9 fre1 — 1.
Proof. By Lemma 2, the smallest n € N such that W, <, € is

fa+fo+ i+ + fimr = for — 1,

which is the smallest n € N such that n =549 fry1 — 1. Let ng := fry1 — 1.
Then, the regular expression of ng is

no = fu+ fomo + focat -+ fa,
where d = (1 — (—=1)%)/2. The next n with n =;45 ng is clearly
n= fryra+ o+ frzat-+ fa,

which is, by Lemma 2, the next n such that W}y <, € since fr+ fir1 = fryo.
For:=1,2,3,---, let

o0
ni =mno+ Y 7i(i) ferats -
7=0



Then, it is easy to see that n; is the i-th n after ng such that n =549 fre1—1.
We prove by induction on ¢ that n; is the i-th n after ng such that W, <, é.
Assume that it is so for ¢. Then by Lemma 4, Wyv;W}; <,. €. Hence, the
next n after n; such that Wy, <, € is n; + fr + |v|. Thus, we have

ni+ fe+ vl =ni+ fo + ferile=a + fro1lezs
=n; + frs2ln@=o + frr1ln@=1

= n’i-l—l 9

which completes the proof. [ ]

Lemma 7 Let kK > 0 and n,1 € N satisfy that n =41 1.

(1) If0 <0 < fi, then, o(n+7) = 10(i+J) holds for any j = 0,1, -+, fryo—
1 — 3.

(2) If fr < i < fig1, then, o(n + 3) = 70(¢ + j) holds for any j =
0717"'7fk+3_i_3'

Proof. (1) We prove the lemma by induction on k. The assertion holds
for k = 0. Let £ > 1 and assume that the assertion is valid for £ — 1. For
J=0,1,---,fr —i, n4+ 7 = 1+ 7 holds and hence, 7o(n + j) = 70(¢ + J)
holds. Let jo = fir — . Then, since n + jo =1 ¢ + jo = 0, we have
To(n + jo + ) = 7ot + jo + J) = 7o(y) for any j = 0,1,---, fry1 — 3 by
the the induction hypothesis. Thus, m9(n 4+ j) = 70(2 4+ 7) holds for any
J=0,1,---, frya — 7 — 3. This proves (1).

(2) In this case, Tp41(n) = 0 holds. Hence, we have n =g45 ¢. Therefore, we
can apply (1) with k& + 1 for k. Thus, we get (2) [ ]

Let n,m,1 € N with m > 2 and 0 < ¢ < m. We call n an (m,1)-shift
invariant place in é if

Ennt1 " Endm—-1 = Enti€ntitl " Enditm—1 -

We call n an m-repetitive place in £ if there exist 7,7 € N with ¢ > 0 and
i +j < m such that n + j is an (m,)-shift invariant place in é. Let R,, be
the set of m-repetitive places in é.



Lemma 8 (1) Let n =441 0 for some k > 1. Then, n is an (fry1 — 2, fr)-
shift invariant place in €.
(2) Let n =41 fi for some k > 2. Then, n is an (frg1 — 2, fr—1)-shift

invariant place in €.

Proof. (1) Since the least ¢ > n such that either ¢ =p42 frg1 — 1 or
! =kt2 fra1 — 2 is not less than n + fry1 — 2, by Lemma 5, we have

Enfntl " Entfrpr=3 = CntfrEntfitl T Ent fitfrip -3 -

(2) Since the minimum ¢ > n such that either ¢ =541 fr—1o0ri =p41 fr—2
is n+ fri1 — 2, by Lemma 5, we have

Enlntl " " Cntfry1—3 = Entfr1Cntfror+l " End frmi+frp1—3 -

Theorem 1 The pair (n,m) of nonnegative integers satisfies n € R, if
one of the following two conditions holds:

(1) fr+1 <m < feg1 =2, n— 1 =41 0 and i < n for some k > 1 and
1€ 7 wzthfk—l—l §m—|—@§fk+1—2

(2) fici+1<m < fog1—2, 0 <nandn — 1 =gyq1 fir for some k > 2 and
iEZ withfk_l—l-l §m—|—@§fk+1—2

Remark 2 The “if and only if 7 statement actually holds in Theorem 1 in
place of “if 7 since we will prove later that H,, ,, # 0 if none of the conditions

(1) and (2) hold.

Proof of Theorem 1. Assume (1) and ¢ > 0. By (1) of Lemma 8, n — 1 is
an (fr+1 — 2, fr)-shift invariant place. Then, n is an (m, fi)-shift invariant
place since t + m < fri1 — 2. Thus, n € R,, as fr < m.

Assume (1) and 7 < 0. Then, since n — i is an (frx41 — 2, fx)-shift invariant
place and m < fr42 — 2, it is an (m, fi)-shift invariant place. Moreover,
since fr —1 < m, n is a m-repetitive place.

Assume (2) and ¢ > 0. Then, n — ¢ is an (fr41 — 2, fr—1)-shift invariant
place by (2) of Lemma 8. Then, n is an (m, fx_1)-shift invariance place since
1+ m < fry1 — 2. Thus, n is an m-repetitive place as fr_; < m.

Assume (2) and ¢ < 0. Then, since n — ¢ is an (frr1 — 2, fr—1)-shift
invariant place and m < fiy1 — 2, it is an (m, fr_1)-shift invariant place.
Then, n is an m-repetitive place, since fz_1 — 1 < m. Thus, n € R,,. [ ]
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Corollary 1 The place 0 is m-repetitive for an m > 2 if m & U2, {fx —
17fk}

Remark 3 The “if and only if” statement actually holds in Corollary 1 in
place of “if” since we will prove later that Hy,, # 0 if m € U2 {fi— 1, fe}

Proof of Corollary 1. Let ¢ = 0 in (1) of Theorem 1. Then, 0 is m-
repetitive if fr +1 < m < fryy — 2 for some k > 1. [ ]

Corollary 2 Let k > 2. The place n is fp-repetitive if
Wi < E41ént2 - Entaf—s -

Proof. By (2) of Theorem 1, for any k > 2, n is an fi-repetitive place if
n—1 =41 fr for some s with e <nand —fr_o+1 <12 < fr_y — 2. Since the
condition n — 1 =gy fir is equivalent to n — 1 =p15 fr and there is no carry
in addition of —z to both sides of n =519 fir + 1, the condition n — ¢ =41 fi
is equivalent to n =49 fr+1. Hence, the place n is fr-repetitiveif n =549 J
for some j with fr_1 +1 < 7 < fra1 — 2. By Lemma 6, this condition is
equivalent to that W}, starts at one of the places in {n+1,n+2,---, fr —2},
which completes the proof. [ ]

3 Hankel determinants

The aim of this section is to find the value of the Hankel determinants

H, . =H,,(¢)=d
Hyp = H,n(Z) =d
(n=0,1,2,---; m=1,2,3,--+)

for the Fibonacci word ¢(a,b) at (a,b) = (1,0) and (a,b) = (0,1):

e := ¢(1,0)=10110101101101-- -,
g := £(0,1)=01001010010010---.

It is clear that H, ., (e(a,b)) = 0 if n is the m-repetitive place in £(a,b),
where a, b are considered to be two independent variables, so that, in general,
H,, mm(e(a,b)) becomes a polynomial in « and b as is stated in Remark 1.
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In the following lemmas, theorems and corollary, we give statements for
¢ and g parallelly, while we give the proofs only for ¢ since the proofs for @
are similar to those for e. The only difference between them is the starting
point, Lemma 5, where a — b in the right-hand side is 1 for ¢ and —1 for .

We use the following notation: for any subset S of {0,1,2,3,4,5}, y(k:.5)
is a function on k € Z such that

x(k:9) = { 1_1 (if £ = s (mod 6) for some s € 5)

(otherwise).
The following corollary follows from Theorem 1.

Corollary 3 H, ., = 0 if one of the conditions (1), (2) in Theorem 1 is
satisfied. The same statement holds for M, .

Lemma 9 For any k > 2, we have

Hoy, = x(k:2,3) (Hoy_, — (=) Hy 15, )
Moy = x(k:1.3,4,5) (Hop_, — (=)} _1p ).
Proof. The matrix (5i+j)0§i,j<fk is decomposed into three parts:

A
(Cixjo<ijern = | A |,
B

where
A = (€igj)o<i<frs 0<i< s
A" = (€ gy _ptiti Jo<i<fi_s 0<i< fy
B = (ef,_i+its )o<i< fr_2.0<i< by -
By Lemma 5, the following two subwords of &:
€081 """ Efpntfr—2 and Efpm1C o1l Efp it fr ot fr—2

differ only at two places, namely, ey, o # ey, _ 45,2 and e, 1 # €, +/-1-
Thus, we get
B—A=

(15)

12



Let Ag, Ay, -, Ay, 1 be the columns of the matrix ( w ) in order from

the left. Since

(AoAr - Ap_,2) = (Sinj)o<icfror 0<i< fun—1
(Ao Ap_ir o Apma) = (65,11 1it )0<i< oy 0<5< foa—1

and
081" " Efp ot fuc1—3 = ChHaC i1l E it ot a1 -3

by Lemma 5, we get
(AOAl T Afk—2_2) = (Afk—lAfk—1+1 T Afk—Q)' (16)

Thus, from (15) and (16) we obtain

HO,fk
AO Afk—l_l Afk—l Afk_2 Afk_l
o G
= det - -
0
(-1 (-1 0
Ao Afk—l_l 0 0 Afk—l (17)
(gl U7
= det - -
0
(CF (—1 0

fe—2

— (_1)(k—1)fk_2(_1)[ 2 ]det(AoA1"'Afk_l_1)

fk—2 _
+(—1)kf’“‘2(—1){ e Cdet( Ay gy Ay ).

Since
€081 " E2fp1-3 = EfpC 1l Efpt2fi1 -3

13



by Lemma 5, we get

det(Ag, 1 AgAr -+ Ay _ o) = det(ep,—1yiti)o<ij<fio, = Hp1,p, -
Thus we get

fk—2

Hoy, =(—1)(’“_1)f’“‘2(—1){ ’

+(_1)kfk_2(_1){ ka—l Jro—1

= x(k:2,3) (Hogo, — (1)1 Hy 1 jy )

where we have used the fact that

fe—2

(_1)(k—1)fk—2(_1){ 2 } = v(k:2,3).

Lemma 10 For k > 2, we have

Efk+1_17fk = X(k:1737é5)ka+l_1vfk—l
ka+1_17fk = X(k:273)ka+l_17fk—l

Proof. Just like the proof of Lemma 9, we decompose the matrix (e, . —14i+; )Jo<i,j< s
into three parts:
A
(& frpi—thitiJosijeps = [ A" [
B
where
A = (€ fpr 1447 )0<i< fums 0< < fi
r_
A = (€ fypy =14 fuobidi JOSi< fr_a 0<i< i
B = (& fipr =14 fur i J0<i< fimn 05 < fr -

By Lemma 5, the following two subwords of &:

Efrr1=1€ a1 """ frp1 Hfu—2tfr—3 and
Efapi—1+fe1Cfapitfooy et a1t fe—oHfr—3

14



differ only at two places. Namely, ey, . 452 7# €p i 4si+f—2andep 4p1 7
€ fusr+fu_1+fn—1- Lherefore, we get

g_a=| 0
SIS 0

Thus, we have

det(e s, —14its)o<ij<f

Ao A1 te Afk_l—l Afk_l to Afk—2 Afk_l
(—1)F
et (—1)F (=)

)

= (—1)““2(—1){ ’ } det(AgAy - -+ Ay 1)
= x(k: 1737475)ka+1_17fk—1 )
(15)
which completes the proof for Hy, 14, _,. [ ]

Lemma 11 For any k > 2, we have

ka+1_17fk—1 = X(k:275)H07fk—1

ka+1_17fk—1 = X(k:275)H07fk—1

Proof. Since by Lemma 5,

Efan1—1€ a1 " gt o2
Efapit a1 fapitfrr T C a1 t2feo1-2 5

15



we get

(€ frgr—14its Jo<ij< oy = (€ frgriti Jo<ii<fucy -

O 1 0
Also, by Lemma 5,

(& feprritio<ii<se = (Givjo<ij<s -

Thus we obtain
Hpyoo1 50 = det(eg—14it)o<inj<fum

= (1)1 Vdet(e g, vits)o<iy< fos

=x(k:2,5)Hoy_, ,

which completes the proof. [ ]
Lemma 12 For any k > 3, we have
Hop, = x(k:2,3)Hoyp_, +x(k:2,4)Hoy,_,
Hoyp = x(k:1,3,4,5)Hoy,_, 4+ x(k:0,1,2,3)Hoy, _,
|

Proof. Clear from Lemmas 9—11.

Lemma 13 For any k > 0, we have
HO,fk = X(k : 2)fk—1
FO,fk = X(k:1,2,4)fk—

Proof. 1t holds that
H07f0 — 1, H07f1 — 1, H07f2 — —2
F(Lfo — 0, F(Lfl — —1, F07f2 — —1

Thus, the lemma holds for &k = 0,1,2. For > 3, we can prove it by induction
|

on k using Lemma 12.

16



Lemma 14 For any k > 1, we have

HO,fk—l = X(k:074)fk—2
Fo,fk—l = X(k:2737475)fk—3-

Proof. Since the matrix (€i4;)o<ij<s—1 is obtained from the matrix

(€i4j)o<ij<f. by removing the last row and the last column, for any & > 2
we have by (17),

Ho 1

1
— det (=D (=1

fr—2—1

— (_1)k(fk—2—1)(_1)[ 2 }det(AoAl"'Afk_l—l)

fre—2—1

T L

(19)

Hence, in view of Lemma 13, we obtain the formula for Hy 4. ]

Theorem 2 For any m,k > 1 with fr-y < m < fr and n € N with
n =g11 0, we have

X(F : 2) i (if m=fi )
H,, = X(k:0,4)fr_a (ifm=f,—1)
0 ( otherwise )
B Ak 1,2,4) fi (ifm=f; )
H,., = X(k:2,3,4,5) fr-s (ifm=fr—1)
0 ( otherwise ).

Proof. By Lemma 3 and 7, the matrix for H, ,, coincides with that for
Hy ,, so that H,,,, = Hg,,. Then, the first two cases follow from Lemma 13

17



and 14. For the last case, by Corollary 1, there exist two identical rows in
the matrix (€i4;)o<ij<m, so that Hy,, = 0. [ |

Theorem 3 For any k,n,1 € N withn =111 and 0 <1 < frog — 1, we
have

ks 2k 1Y fi
if either Tpy1(n) =0 and 0 <@ < fryq
or Trp1(n) =1 and 0 <17 < fi

H%fk = X(k . 17274)fk—2
( if either Tp41(n) =0 and i = fr_y )

ori1 = frr1 —1

0 (otherwise)

X(k : 17274)X(k : 174)ifk—2
if either Tpy1(n) =0 and 0 <@ < fryq
or Trp1(n) =1 and 0 <17 < fi

=

n,fk - X(k : 2)fk—3
( if either Tp41(n) =0 and i = fr_y )

ori1 = frr1 —1

0 (otherwise).

Proof. The theorem holds for k = 0. Let £ > 1.
Assume that either 7441(n) = 0 and 0 < ¢ < fr_q or T41(n) = 1 and
0 <1< fr. Then we have by Lemma 3 and 7

€itj = Enty (]:Ovlvvfk_l_l)
Eitj—fr = Entj (.]:fk_lvfk772fk_2)
gj=¢ip (1=0,1,-, fr—1).
Hence, the columns of the matrix (£,44+7)o<h,j<y, coincide with those of the
matrix (ep45)o<h,j<s,- The j-th column of the former is the (i 4 j)(mod f)-

th column of the latter for j = 0,---, f, — 1. Therefore, we get I, 5, =
(—1)"Ux= Hy ¢, which leads to the first case of our theorem by Theorem 2.

18



Assume that ¢ = fry1 — 1. Then we have I, j, = Hy, . 1, by Lemmas
3 and 7. Thus, by Lemmas 10—12 we get

H%fk = X(k . 17274)fk—2 .

Assume that 7441(n) = 0 and ¢ = fz_;. Then, since n =g49 ¢, we have
H, s = Hy _, 5 by Lemmas 3 and 7. By Lemma 1,

€ttt Eft2fi—2 <1 Wi oWy WieWes i Wiy
= f—1E g e r2si-3 =g We2a Wi a Wi Wy Wy

holds. Since the last letter of n comes one letter before the last letter of the
palindrome word Wy_oWi_ Wi Wi_1W;_5. Hence, £ is the mirror image of
1, so that

(gfk—1+i+j)0<i ich

1 1
0 0
. ‘ (gfk+1_1+i+j)0§i,j<fk . ‘
0 0

1 1

Thus, we obtain Hy,_, 5, = ka+1_17fk and

H%fk = X(k . 1, 274)fk—2 .

Assume that n does not belong to the above two cases. Then, since
Te+1(n) = 1 implies ¢ < fi, we have the following condition:

Thp1(n) =0 and fry +1 <@ < fryq — 2.

This condition is nonempty only if & > 2, which we assume. Then, the
condition (2) of Theorem 1 is satisfied with fi (resp. ¢ — fi) in place of m
(resp. 7). Thus, by Corollary 3, H, s, = 0. ]
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Lemma 15 For any k,n,it € N with k > 1 and n =pyy v, assume that
either o1 (n) =0 and 0 < i < fr—y or mpya(n) =1 and 0 < ¢ < fr. Then
we have

X(k:0,4) fr—a (1=0)

x(k:2,3)x(k: 1,2,4,5)iHi+fk,fk_1—1
x(k:1,2,3,5)x(k < 1,4) fas (0 <7< frz)

Hn,fk—l -
X(k : 273)X(k : 1727475)iHi+fk7fk—1_1 (fk—Q <1< fk—l)
X(k 0, 4)x(k: 1,4) frs (fe—1 <@ < fk)
X(k : 2737475)fk—3 (Z = 0)
X(k 1,3,4 5)X(k 727475) i+ fEfr—1—1
T +x(k:0,1)x(k: 1,4) fizs (0 <1< frea)
n,fk—l

X(k : 1737475)X(k : 1727475)iﬁi+fk7fk—1—1 (fk—Q <1 S fk—l)

x(k:2,3,4,5)x(k : 1,4) fr_s (fro1 <1 < fr).
Proof. If 1+ = 0, then the statement follows from Theorem 2. Let
AJ = t(gjv i1, 7€j+fk—1_1)
A; = t(gjv €41, " 7€j+fk—1_2) (20)
B; = 7It(gjl-l-fk—lvgj-l-fk_rl-l T 7€j+fk_1)
(j=0,1,2,---).

Then, by the same argument as in the proof of Theorem 3, we obtain

B Aioo Ay _1Ag-+ Aiy
Hp g1 = det ( BB B Bl_, )

V(i Ag--- Aj_gAi- Ap
= (=)D )det(BZ---Bg_ng---Bj’;i_i )

Therefore, if fr_2 < i < fr_1, then by the same argument to get (17), we
obtain

(=)= =
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det O (=11 O
(=% (=Dt
Since by Lemma 5
0
Afk_l - Afk—2_1 0 )
(=)
we get
(=)= =
Apr A AL AL 0 0 0
* ¥ ok ee- ok 0 0 (—1)’“
-1 k -1 k—1
det ((_1)12—1 ( )
(-1 (—1p

fr—2

= (—1)“’“‘2(—1){ ’ }det(AéJ”'A;’—2A2”'A/fk_1—1)
= X(k : 1737475)(_1)(2_1)(fk_1_Z)Hi+fk7fk—1—1'

Thus we obtain
Hygoor = x(k:2,3)(k:1,2,4,5) Hiy g, fr i1
Assume that fiz_1 < < fr. Then as above we have

(- ) =
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Ag--- Ay 1 0 -0
(=% (=Dt
0 (=1
det 0 0 (—1)
(—1)* 0 O
(—1)*
i fom1 1)+ (b= 1) (fp—i)+ | =2
_ (L)l [ 2 }det(Ao---Afk_l_l).
Hence, by Lemma 13

X(k 20,3, 4)x(k : 1,4) Hop,_,

anfk_l
X(k : 074)X(k : 174)2fk—2-

Assume that 0 < 7 < fi_3. Then, since A;_14y,_, = A;_1, by the same

arguments as above we get

(=)= =

det

= (—1)”’“‘2(—1){

Since

Al A AL AL 0 Al
(—1)F
(_1)k—1
0
(—1)F
]
2l det(Ag--- AL AL A/fk—l_l)

-1 | ]

(=)D (Frm2 =D (1)
Aisg A Ap_ 1 Aiy).

det(Ap - -

det(Ag- - AigAi- - Ay 1 Ai)) = (=D Hy g,
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we obtain by Lemma 13
Hypoor = x(k:2,3)x(k:1,2,4,5) Hey g, 5o o1
+ x(k:1,2,3,5)x(k:1,4) fr—z . (21)
Note that (21) holds also for ¢ = fj_» since in this case,

1| fe=2mt
Hn,fk—l = (_1)k(fk—2—1)(_1)fk—2 1—|—|: 5 i|

det(AO T Afk—2_2Afk—2 T Afk—l—QAfk—l)
and
Ap-1=Ap 1 + (07 -0, (_1)k)7
which completes the proof for H, s, 1. [ ]

Lemma 16 For any k,n,it € N with k > 1 and n =pyy 1, assume that
either o1 (n) =0 and 0 < i < fr—y or mpya(n) =1 and 0 < ¢ < fr. Then
we have

V0,0 =)

H, -1 = x(k:1,2,3,5)x(k: 1,4)ka—3 (0<i< fre1)
X(k:0,4)x(k:1,4) frz (fr—1 <1< fx)

B X(k:2,3,4,5) fr-s ' (1=0)

H, -1 = x(k:0,1)x(k: 1,4)ka_4 (0<i< fre1)
x(E:2,3,4,5)x(k:1,4) fiis (fror << fr)

Proof. The first and the third cases have been already proved in Lemma
15. Let us consider the second case where 0 < 7 < fp_;. We divide it into
two subcases, and use induction on k.

Casel. 1=1:
If kK =1, then
Hn,fk_l =llp1 = Ep = 0

since n =3 1 and 79(n) = 1. On the other hand, fy_35 = f_2 = 0, and hence,
we get the statement. Assume that k£ > 2 and the assertion holds for k£ — 1.
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Then, by Lemma 15 and the induction hypothesis, we get

Hn,fk—l
= x(k:2,3)(k:1,2,4,5) Hiyp g o1+ x(k:1,2,3,5)x(k : 1,4) fr_s

= x(k:1,3,45)Hiyys -1+ x(k:2,3,4,5) fr—2

= x(k:1,3,4,5)x(k—1:2,3,4,5)fr—a + x(k:2,3,4,5) fr—2
= x(k:0,1)frea + x(k:2,3,4,5) fr—2

= x(k:2,3,4,5)fr-s ,

which is the desired statement.

Case 2. 1> 2:
If fr_o <1< fr_q, then it follows from the third case and then the fourth
case of Lemma 15 that

Hn,fk—l
= x(k:2,3)x(k:1,2,4,5) Hiv s, o1
= x(k:2,3)x(k:1,2,4,5) x(k—1:0,4)x(k—1:1,4) frs
= x(k:1,2,3,5)x(k : 1,4) fr_s .
Assume that ¢ < fi_, and the statement holds for £ — 1. Then by Lemma
15, we get
Hn,fk—l
= x(k:2,3)x(k:1,2,4,5) Hiv g, po—1 + x(k:1,2,3,5)x(k : 1,4)" fr_s
= x(k:2,3)x(k:1,2,4,5) v(k—1:1,2,3,5)x(k—1:1,4) fr_4
+ x(k:1,2,3,5)x(k : 1,4) fr_s
= x(k:0,4)x(k:1,4) fr—a+ x(k:1,2,3,5)x(k : 1,4) frz
= x(k:1,2,3,5)x(k : 1,4) fr_s .

This completes the proof for H, 4, _;. [ ]

Lemma 17 For any k,n € N with k > 2 and 7p41(n) = 0, we have

I _ { X(k:2,3,4.5) fics (0 Zpsr foor)
et X(k : 074)fk—2 (n =pt1 fro1 + 1)
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T _ { X(k:0,4)fr_a (7 =gg1 fr-1)
mofr=l X(k:2,3,4,5) fres (0 Zpgr fe—r +1).

Proof. Assume that n =p41 fi—1. Then since 7p41(n) = 0, we have
n =g12 fr_1. Therefore, by Lemma 3 and 7, we get

I foo1 = det ( Afk—l T Afk_lAfk T Afk+1_2 )
nfr—1 = / / ' / )
g Bfk 1 ”'Bfk—lek '”Bfk+1—2

where we use the notation (20). By Lemma 5, the following two subwords
of e:

EnEntl  Engfrotfi—3 AN Enyp Entfi 1417 End fisit fmot fr—3

differ only at two places, namely, at the (fy —2— fr—1)-th and the (f, — 1 —
fr—1)-th places. Hence, we have

Ag o Apy Ay Ap
H, 5 1 = det ( k-l k k k1 =
g B}k—l T B}k_lB}k T B}k+1_2
Afk—l T T Afk_l Afk T Afk+1_2
)k (_1)k—1
k

det O
0

By adding the first fr_o — 1 columns and subtracting the last fr_o — 1
columns to and from the column beginning by Ay, _;, we get the column

t(Afk_l() e 0) 4t ((_l)k—lo - 0(_1)k0 o 0)7
where (—1)* is at the (f;_o — 1)-th place. Since, by Lemma 5

(Afk—l o 'Afk—Q) - (Aka—l T Afk+1_2) =
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hence, we get

anfk_l
(—1)’“(fk—2—1)(_1)fk—1(fk_2—1)+ [’%—2_2—1}

{det(Afk_lAfk e Afk+1_2) + (_1)k_1 det(A/Jﬁk T A/Jﬁk+1—2)

b (—1)H ot det(AY - A/}2+1_2)}7 (22)
where
Al = e g, -1)
AT = e i 2E i famy T -1

Here, we have

det(Afk_lAfk T Afk+1_2) = ka—Lfk—l
det(A/f{k o A/f/k+1—2) = ka+17fk—1_1 ? (23)

and by Lemma 5

" "
det(Afk e Afk+1_2) =
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(—1)=t (1)t
Af A

ka+1—1 (_1)k O

where we put
Cj = (Ei€jt1 " Ejtfrp—1)-

Since Cp 44 ri = Crtj (3 =0,1,---, fr_s — 2) by Lemma 5, it holds that

" "
det(Afk U Afk+1_2)

(:7fk
_ _ _ fr—3—! .
— (_1)(k 1)(fk—3 1)+fk—3 1‘|‘|: ) i| det
Cbﬁ+fk—2_2
(zh+1—1
Moreover it follows from Lemma 5 that
(7fk (7fk+1
det : = det : = (_1)fk_2_1ka+1—Lfk—2 )
(7fk+fk—2_2 (7fk+1+fk—2_2
(zh+1—1 (zh+1—1

27



which implies
det(A/Jﬁ; o A/Jﬁ;+1—2) = X(k : 07 37 5)ka+1_17fk—2 .
Thus by (22), (23), Theorem 3 and Lemma 16, we obtain

H, 5 -1
= X(k : 4)ka_17fk—1 + X(k : 072)ka+17fk—1—1 + X(k : 17374)ka+1_17fk—2
= x(k:2,3,4,5) fr—s + x(k:2,3,4,5) fr—a + x(k:0,1) fr_s
= x(k:2,3,4,5) fr—3,

which is the first case of our lemma.
To prove the second case, assume that n =11 fr_1 + 1. Then, as above
we get

I —d Afk—1+1 "'Afk—lAfk "'Afk+1—1 _
nfu—1 = det B ...B. B ...B -
fr—14+1 Se—1%fr frg1—1

Afk—1+1 T T Afk_l Afk T Afk+1_1
)k (_1)k—1
k

det O

(C1pf (1
(—1)4-

fre—2—1

= (_1)(k_1)(fk_2_1)(_1)(fk_2_1)fk_l+{ ’ } det(Afk e Afk+1—1) .
Therefore, we get by Theorem 3

Hygpo-r = x(k:0,3,4)x(k —1:2)fr2
= X(k : 074)fk—2 )

which completes the proof for H, s, 1. [ ]
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Theorem 4 For any k,n,i € N with k> 1, n =510 and 0 <1 < fry1, we
have

X(k:0,4)fr_a (1=0)

x(E:1,2,3.5)x(k:1,4) frrs (0<i< fry)

(ks 0,4)x(k < 1,4) fres ( it <i < i )

Hyp1 = and Tp1(n) =1
| 0= fr-1+1
X(k:0,4) fr_z ( and Tri1(n) =0 )
0 ( otherwise )
X(k:2,3,4,5) fis (i=0)
XU O DX L fiy (020 < fi)
, fro1 <1< fa
_ ki 2,3,4,5)\(k : 1,4) i
Hn,fk—l = X( y 9y Iy )X( ’ ) fk ? ( and Tk-l-l(n) =1
| 0= fr-1+1
x(k:2,3,4,5) frs ( and T41(n) = 0 )
0 ( otherwise ).

Proof. The first four cases follow from Lemma 16 and 17. Note that
for + = fr_1, the assertion in these lemmas coincide, so that H, 5 _q is
independent of 7x41(n). Let us consider the last case, where 7441(n) = 0
and fr1 +2 <1 < fryr — 1. We may assume that & > 2. Then, with
m = fr —1 and 7 — fi in place of ¢ there, the condition (2) of Theorem 1 is
satisfied. Therefore by Theorem 1, n € 'R,, which implies that H, s _; = 0.
|

Lemma 18 For any n,m € N such that fr_o4+1 <m < fr—2,1 <n and
n—1=g41 0 for some 1,k € Z with k> 2 and m +1 = f. Then, we have

Hyp = x(k:2)x(k:3,4,5) (=D)/Af_,
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Fn,m = x(k:1,4)x(k:0, 1,2)i(_1)[i/2]fk_3 ‘

Proof. At first, we consder the case 1 < fr_5. By arguments similar to
those used in the proof of Lemma 15, we get with the notation (20)

Hn,m —
AiAiyr - Apivi 0 - 0 Ap
(=% (=Dt
det O P O
(=D (=D
Therefore, by Theorem 3 and 4,
Hn.m
e O
= (-7 | }Hz’,fk_l—l +(-1) ' | }Hz’,fk_l
= x(k:2)x(k 3,4.5) (=)= fros + fia)
= x(k:2)x(k:3,4.5) (=) fis
If 1 = fi_o, then the lemma follows from Theorem 3.
Finally, we consider the case fy_o <4 < fr_1. Then, denoting
AT =" (g1 g ) (24)
we obtain by Theorem 3
Hp = det(AFTTART o AST) =
Fr—2 Fr—2 Fr—2 Fr—2 Fr—2 Fr—2
A Ayt o ARTL AT AT o ARD
(=D (=)
0 (1)
det cee e
(—1) (1)
(=)

: Foo1—i
= (_1)k(fk_1—i)(_1)(fk—1—2)fk_2+ {kT}

= (b 2)x(k:3,4,5) (=), |

ka—l Jr—2
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which completes the proof for H, ,,. [ ]

Lemma 19 For any n,m € N such that fr_1 +1 < m < fr — 2, 1 < n,
n—1 =g fr1 for some i,k € Z with k> 2 and m + 1 = [, we have

Hn,m = X(k : 1, 2,4)X(k‘ : 07 17 2)2(_1)[2/2]fk—2

Hym = x(k:2)x(k:3,4,5) (=D f_5 .

Proof. By the same arguments and in the same notations as in the second
part of the proof of Lemma 18, we obtain

o = Qe A L) -

Se—=17"fr Srg1—1
APTAR e AT AT AR AL
(=D (=)
(_1)k—1
det
(—1f (-
(1!
) ) fes fr—a—t
T ek s
= x(k: 1,2,4)x(k £ 0,1,2)' (=) fisy .
which completes the proof for H, ,,. [ ]

Lemma 20 For any n,m € N such that fr_14+1 <m < fr—2,1 <n and
n—1=g41 0 for some 1,k € Z withk>2 and m+1 = fr — 1, we have

Hym = x(k:0,4)x(k:3,4,5) (=DAf_,

Hn,m = X(k : 2, 3, 47 5)X(k : 07 17 2)2(_1)[2/2]fk—3 .

Proof. The proof is similar to the first part of the proof of Lemma 18.
With the notation in (20), we get

Hn,m —
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det

fr_o—1—1

Z(—l)k(f’“‘rl_i)(—l)[ i }det(AiAz’Jrl"'Afk_lH—l)-

Hence, by Theorem 3
Hym = x(k:0,4)x(k: 3,4,5)i(_1)[i/2]fk_2 :
which completes the proof for H, ,.. =

Lemma 21 For any n,m € N such that fr_o4+1 <m < fr—2,1 <n and
n—1 =g fro1 for some i,k € Z withk > 2 and m+ 1= f, — 1, we have
Hn,m = X(k : 2737475)X(k : 07 172)i(_1)[i/2]fk—3

Hym = x(k:0,4)x(k:3,4,5) (=D f_, .

Proof. Since1= fr — 1 —m, we get 1 <1 < fr_y1 — 2.

Ifie=fr_o—1, then m = fz_1 and n =, fir — 1. Therefore, by Theorem
3, we get

Hym = x(k—1:1,2,4) fr-s,

which coincides with the required identity since
x(k:0,1,2)=271 = y(k: {0,1,2} N {0,3}) = x(k : 0),

pl

If i = fy_o, then m = fr_1 — 1 and n =, 0. Therefore, by Theorem 4, we
get

=] _ x(k 1 0,4).

Him = x(k—1:0,4)fr_s,
which coincides with the required statement since
(k:0,1,2)52 = y(k:{0,1,2} N {1,2,4,5}) = x(k:1,2),

fr—2

(—1){ : }zx(k:i’),ll).
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If fo.o+1<i< fry—2,then n—1 =, 0 with ¢/ := ¢ — fr_5. Then,
sincem—+1' = fr1—1and fro+1<m< fr_1 —2, applying Lemma 20,
we obtain

Hym =x(k—=1:0,4)x(k—1: 374,5)i/(_1)[i//2]fk—3
= (k:1.5)x(k:0,4,5) \(k:{0,4,5} N {1,24.5})(-1)F'/"1f, 5

fr—o+1

= x(k:1,4)x(k: 0,4,5)2'(—1)[2'/2](—1)[7} (—1)r=2f, 5
= x(k:2,3,4,5)x(0,1,2) (=D, .

Now, we consider the case 1 <1 < fr_o — 2. Then, with the notations in
(24) and in (20), we get
Hiy = det( AP oo ARTIALT AR ) =

fr—1 fr41-2

Afk—rl-i Afk—1+i+1 Afk_2 Afk_l Afk Afk+1_2

(CDF (-1

det

Therefore, by arguments similar to those used in the first part of the proof
of Lemma 17, we get

Hnm - (_1)k(fk—2_1—i)(_1)fk—l(fk_2—1_2')+[hﬂ%—l—z}
{det(Afk_lAfk ce Afk+1—2) + (_1)k—1 det(A’Jﬁk e A/f/k+1_2)

4 ()bt det(A” - A/f;+1—2)} :

where we use the same notations as in the proof of Lemma 17 except for

A?"s which are defined by

o __t e e . - . C e e .
Aj - (51 Eitfr—a—i—2 Ejt fr_o—i €]+fk—1_1)'
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Then, following the arguments there, we get

Hym = (b O)x(k:0,1,2) (=0 Hp g
+ (~DF Hy g+ (1) )

with

Eoi= det(A7 - A/f/;“ 2)
’ ! !
= det(Afk fk‘|‘fk 2—1— 2Afk+fk 2=t Afk+1 1)
(4]

_ / /
= det Sor1 fk+1+fk 2o—1— 2Afk+fk =1 Afk+1 1)

= ( 1)(fk =2kt det(A/fk-I-fk 20—t A/fk+1+fk 2—1i— 2)

= (Ut e

where we have used Lemma 5. Therefore, by Theorem 3 and 4, we have
Hym = x(k 2 4)x(k 2 0, 1,2) (=D)F {x(k —1:1,2,4) fis
_I_(_l)k—lx(k 1 27 37 47 5)fk—4 + (_1)k-l-fk—z—l—i(_1)(fk—2—i—1)(fk—3+i)
Xk = 151,23, 5)x (k= 12 L) =7 f_, )
= x(k:2,3,4,5)x(k : 0,1,2) (=1)M4 i,

which completes the proof for H, ,,. [ ]

4 Tiling for H,,, and H, ,

In this section, we collect the values of H, , and H, ,, obtained in the
last section and arrange them in the quarter plane Q := {0,1,2,---} X
{1,2,3,---}. We will tile Q2 by the following tiles on which the values H, ,,

are written in. That is,

U == Vi = {(1,-1)}
U = {(,))€Z 0<i+j< frsa—1, — fira <j< -1}

(k=2,3,4,---)
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Vi - 74 :

3Uk—>Z,Uk2

ur(l,—1):=0, v (1,-1):=1

with the written-in values vy

k+1 0}

).
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Vi = {(n, fr);n € Nand n =12 frg1 + fe-1}
Ty == (Vi+ (=fre2, fr)NQ
(k: 172737"' )7

where V + (z,y) :={v+ z,w +y); (v,w) € V}ior VCZ? (x.y)e€ Z>

Theorem 5 [t holds that

2= ((L)J Ut ()L U Vit (0.1 UTk) ,

where the right hand side is a disjoint union, so that ) is tiled by the tiles
Uy’s, Vi's and Ty’s. Moreover, for any (n,m) € Q, if (n,m) = (i,7) +
(¢, 5") with (i,7) € Uy and (¢',5") € Uy , then we have H, ., = ui(i,j)
and M, ,, = up(i, 7). Also, if (n,m) = (i,7) + (¢, 5') with (i,7) € Vi and
either (', 5") € Vi or (¢, 5") = (= fr—2, f&), then we have H, ,, = v(i,7) and
H,.,. = 0(i,7). Furthermore, in this tiling, the tiles Uy, Vi, and T}, with
k > 2 are followed by the sequences of smaller tiles Up_1Vi_1Uj_1, Up_1 and
Ui_1, respectively, as shown in Figure 1.

Proof. Take an arbitrary point (n,m) € Q. Let frq < m < fr. If
n+m— fr >0, define 0 < < frys by ¢ =42 n.

Case 1 n+m— fr<0: Weget (n,m) € Tj.

Case 2 0 <1< fro1: Weget (n,m) €Uy + (n+m—1— fi, fr)

Case 3 fro1 <1< frg1 @ Weget (n,m) € Uppr+(n+m—i— fri1, frr1)-

Case 4 fr41 <@ < fry1+fr—1: Weget (n,m) € Upy+(n+m—i+ fr_1, fr).

Case 5 frr1+fic1 <1< frpo: Weget (n,m) € Vk—l—(n—l—m—i_—l—ka_l,fk).

The fact that the written-in values coincide with H,, ,, and H, ,, follows
from Lemma 18 (first case in uy and @), Theorem 3 (second case), Lemma
21 (third case), Theorem 4 (fourth case), Corollary 3 (fifth case), Lemma
19 (first case in v and Uy), Theorem 3 (second case), Lemma 20 (third
case), Lemma 20 (fourth case) and Corollary 3 (fifth case). The m in the
preceding lemmas and theorems coincides with f; + 7 in Theorem 5 while
the meanings of the symbols k,7,n are not necessarily the same between
them. ]
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Figure 1: Tiling for H,, ,

5 Padé approximation

Let ¢ = @op1p9 - - - be an infinite sequence over a field K, [:[nm = Hum(p)
be the Hankel determinant (3), and ¢(z) the formal Laurent series (4) with
h = —1. We also denote the Hankel matrices by

~

My = (Prtis)ii=0,1,m—1 (25)
(n=0,1,2,...; m=1,2,3,--+),

so that [:[nm = det Mnm )
The following proposition is well known ([1], for example). But we give a
proof for self-containedness.

Proposition 1 (1) For any m = 1,2,---, a Padé pair (P,Q) of order m
for ¢ exists. Moreover, for each m, the rational function P/Q € K(z) is
determined uniquely for such Padé pairs (P, Q).

(2) For anym = 1,2,---, m is a normal index for ¢ if and only if[:[07m(<p) +
0.
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Proof. Let

P = potpiztp 4 Fpnz”
Q = Go+qz+q@++aa"

Then, the condition || Q¢ — P ||< exp(—m) is equivalent to

GmP0 —Pm-1 =10
10+ et @nPm—1 —Po =0
(26)
Gopo+ Qo1+ o GmPm =0
GoPm—11t QPm—2t -+ GnPam—1 = 0.

Furthermore, Equation (26) for (qoq1 - - - ¢) is equivalent to

(qul s qm_l)Mo,m + qm(@m@m-l—l te S«QQm—l) = (00 o 0)7 (27)

where (pop1 - - - pm ) is determined by (qog1 - - - gm) by the upper half of Equa-
tion (26). There are two cases.

Case 1: ﬁo,m = 0. In this case, since det Mo,m = ﬁo,m = 0, there exists
a nonzero vector (gog1 - - gm—1) such that (gogr - - - qm—1)Mo,m = 0. Then,
Equation (27) is satisfied with this (o1 - ¢m-1) and ¢, = 0.

Case 2: ﬁo,m # 0. In this case, since det Mo,m = ﬁo,m # 0, there exists a
unique vector (qoqi - -+ ¢m—1) such that

(G0 -~ Gm-1) Mo = —(PrPmt1 *** Pomt)- (28)

Then, (27) is satisfied with this (gog1 - - ¢m-1) and g, = 1.

Thus, a Padé pair of order m exists. Moreover, by the above arguments,
a Padé pair (P, Q) of order m with deg @) < m exists if and only if ﬁo,m =0,
since if I:IOM # 0, then by (27), ¢, = 0 implies (goq1 - - - ¢m—1) = (00---0)
and hence, () = 0.

Now we prove that for any Padé pairs (P, Q) and (P’, Q") of order m, it
holds P/Q = P'/Q)’. By (5), we have

| v — P/Q ||< exp(—n — deg Q)
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and
| o —P'/Q"|[< exp(—m — deg Q).

Hence, we have
| P/Q — P'/Q" ||< exp(—m — deg Q A deg Q)').
Therefore,
| PQ' — P'Q ||< exp(—m + deg Q V deg Q') < 1.

Since PQ)’" — P'Q is a polynomial of z, || PQ' — P'Q || is either 0 or not

less than 1. Hence, the above inequality implies PQ" — P'¢Q) = 0, which

completes the proof. [ ]
In view of (26), without loss of generality, we can put

= potpiztpe A paz”!

P
29
Q = o+qz+ @+ + g™ (29)

Theorem 6 Let (P, Q) be the normalized Padé pair for ¢ with deg Q) as its
normal index m with P, Q given by (29). Then, we have

(1) Q(z) = Hy), det(z Mo, — My ).

(2) det(z1 — My,,) =

z
z 1
z 1
z 1
Pm—1 1
pm—2 pm—l Qm—l 1
y4i ce Pm—1 g2 e 1
Po te Pm—-2 Pm-1 Q1 te dm—1 1
Po cee Pm—2 Qo cee e Gm-1 1
' P1 ; qo : :
Po P1 q1 q2 ceeeee 1
Po qo q1 S ¢ e |
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where [ is the unit matrixz of size m.
(3) . ) )
Hop = (=1)"A TT PG = (=1)"pr TT Q(=),

z;Q(2)=0 z;P(2z)=0

where  T]  denotes the product over all the roots of the polynomial R(z)
z;R(2z)=0

with their multiplicity and py is the leading coefficient of P(z), that is,

Pm-1 = -+ = prr1 = 0, pr # 0 if P(z) is not the zero polynomial, oth-

erwise, pp = 0.

Proof. (1) Note that ¢, = 1 by the assumption that (P, @) is the normal-
ized Padé pair. By (28), we have

0 1

M(Lm — MLm .

0 1
—qo —q1 o —m—2 —Qm-1

Since I:IOM = det Mo,m # 0 by the normality of the index m, it follows that

0 1

Q(z) = det|zl—
0 1

—Go —q o —Om—2 —Qm-1

= det(z] — MlmMo_gl)

= }A](ITIH det(ZMQm — MLm).
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(2) We define the matrices:

Qm =

Q;/n—l =

Pm-1 Pm-2
Pm—2
P1
Po
Pm-1 Pm-2
1
dm—1 1
q1 G2

1 dm—1

1
4m—1 1
q2 43

41

1
1 4m—1
q2 q1

P1 Po
Po

Pm-1

Pm-1 Pm-2
. P2
P2 4l




G q2 0 Gm—2 Gm-1

do 1 Gm-3 Gm-—2
9 G Tt Gm-3
Qm,m—l = . . .
O 1
qo
¥o
O ¥o ©1
@m—l =
. . Som—S
Yo Y1 7 Pm-3 Pm-2

We denote by O the zero matrices of various sizes. We also denote by I,
the unit matrix of size n. By (26), we have

det(z1 — Mo,m)

O O 11 O
- (6 7 ) (oo )
[m—l O O O _[m—l O
O Qu )\'\O0 L) "\ Qi Quus Mo,
(0 o) (e 0. ))
O Q Qmm—1 QMo
O 0O — 1 @) I,-1 O &,
: O Qm a Qm,m—l QmMO,m 0 [m
O O _[m—l O _@m—l
- ((6 6. ) - (o 7 5).

where we use (26) to get the last equality. Hence
det(z1 — Mo,m)

O 0 _[m—l @) _@m—l

(56 )L "))

S8 (G 6 )L 7))
O [m O Qm Qm,m—l Pm
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O O Qo
= det (Z( O Qm ) - ( Qm,m—l ))
m %—1 0 Prln—l 0 0
= (—1)"det (( Qs r. ) ( 0 Qn ))
I, O 21y,
= (—1)m det ( O Q;/n—l OPT/)’L—l ) ”
Q% (%mm—l P

which implies (2).
(3) By (2), we have

Hyp = (—1)" det(01 — Moy,,)

Pm—-1 1
Pm—-2 Pm-1 dm—-1 1
b1 Pm-1 a2 1
= (—1)[m/2] Po Pm—2 Pm-1 41 dm—-1 |,
Po Pm—2 Qo Gm—2
Po P il
Po qo
which completes the proof since the determinant in the last-side in the above
equality is Sylvester’s determinant for P(z) and Q(z). [ ]
For a finite or infinite sequence ag(2), a1(2), az(2), - - - of elementsin K((z71)),
we use the notation
1
[a0(2); ar(2), a2(2), -+ an(2) | := ao(2) + 7
ay(z) +
as(2)+
1
")
and
[ao(2); a1(2), az(2), -+ | := lim [ao(2); a1(2), aa(2), -~ an(2) ] (30)

n—0oo
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provided that the limit exists, where the limit is taken with respect to the
metric induced by the non-Archimedean norm in K((z71)).

We define

~—

pO(Z) = Clo(Z) ) p—l(Z =1 ) qO(Z) =1 ) Q—I(Z) =0
Pal(2) = au(2)pa-1(2) + pa-2(2)
@n(2) = an(2)qu-1(2) + gu-2(2) (31)

for any given sequence ay(2),as(2), -+ € K((z7')). Then p,(2), ¢.(2) €
K((z71)), pu(2) # 0if gu(2) = 0, and

Zig::W“@““@%aﬂ@f-wa4@1EI«@fw>uam}<nzo>

holds, where we mean /0 := oo for ¢» € K((27')) \ {0}, and ¢ + oo :=
00, /oo := 0 for ¢» € K((27')). By using (31), it can be shown that the
limit (30) always exists in the set K((z7!)) as far as

an(z) € Klz] (n>0), dega,(z)>1 (n>1). (32)

For ¢(z) € K((27!)) given by (4), we denote by |¢(2)] the polynomial part
of ¢(z), which is defined as follows:

Lo(2)] == pnz " € K[z,

By T, we denote the mapping 7" : K((z71)) \ {0} — K((z7")) defined by
1 1 B
T = 55— lgm) (Ve EKE)\{0).

Then, for any given ¢(z) € K((27')), we can define the continued fraction
expansion of (z) :

() () ax() o axa(z) ] el €K g

[ ao(2); ai(2),az2(2),as(z), - | otherwise

with a,(z) satisfying (32) according to the following algorithm.
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Continued Fraction Algorithm :

W) = 1))+ anls) = Lgmerocd —ay
N = N(p(z2)) :=inf{m; T™(p(z)) =0} (inf:= o).

We note that if ¢(2) € K(z), then N < oo; if p(z) € K((271)) \ K(2), then
N = oo and the continued fraction (33) converges to the given p(z) € K(z).
We say a continued fraction is admissible if it is obtained by the algorithm.
We remark that a continued fraction (33) is admissible if and only if (32)
holds.

The following proposition is known [2], but we give a proof for complete-
ness.

Proposition 2 The set of all P/Q) € K(z) for Padé pairs (P, Q) for p(z) €
K((2)) coincides with the set of convergents p,(2)/q.(z) (0 < n < N) of
the continued fraction expansion of ¢(z). Moreover, m is a normal index if

and only if m is a degree of q,(z) for some n =0,1,2,--- (with n < N if

v(z) € K(2)).
Proof. Note that

p(z) = ((
(_1)n = Pn- (Z)qn—Z(Z)_pn—Z(Z)qn—l(Z)'

Hence, we have

I 4n(2)(2) = pul2) |
= —ETele) = aol2))
¢n(2) + T"(p(2) = ao(2))gn-1(2)
= exp( degan-l—l(n)_deg(h(z))v

so that
| @u(2)p(2) = pal(2) < exp(—degga(z)) (n < N). (34)

In the case N < oo, the left-hand side of (34) turns out to be 0 for n =
N — 1. Therefore, (p,(2),qa(z)) is a Padé pair of order m = degg,(z) for
all m € {deg¢q,(z); 0 <n < N}.
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Conversely, for any k =1,2,---, let (P, () be a Padé pair of order k. Let
deg q,(2) < k < deg ¢,41 for some n =10,1,2,--- with n < N (deggn(z) :=
o0). Then, since deg Q < k < deg ¢,,+1, it follows from (34) that

lo(z)— 22y

= exp(—degqn(z) — deg gny1(2))
< exp(—deg gu(z) — deg Q).
Since (P, Q) be a Padé pair of order k, we have

P
Iw(z) = 0 | < exp(—k—deg@)
< exp(—deggn(z) — deg Q).
Therefore, we have

H B . pn(Z)
Q qn(Z)

On the other hand, if P/Q # p.(z)/¢.(z), then

’ B . pn(Z) H _ H Pqn(z) - Qpn(z) H
Q qn(Z) Qqn(Z)
> exp(—degg,(z) — deg Q),

which is a contradiction. Thus we have P/Q = p,(z)/q.(z).

Note that p,(z)/g.(z) is irreducible for any n = 1,2,--- with n < N,
since pogu—1 — Pa_1qs = (—1)""'. Let m = deg ¢,(z) for some n = 1,2, -
with n < N. Take any Padé pair (P, Q) of order m. Then deg@ < m. On
the other hand, by the above argument, we have P/Q) = p,(z)/¢.(z). Since
pn(2)/qn(z) is irredusible, this implies that deg ) > deg g,(z) = m. Thus,
m is a normal index.

| < exp(—deg g, (z) — deg Q).

Conversely, let m > 0 be any normal index. Take any Padé pair (P, Q)
of order m. Then, by the above argument, there exists n = 0,1,2,--- with
n < N such that P/Q = p,(2)/q.(2). Hence the irreducibility of p,(2)/¢.(z)
implies deg ¢,(z) < deg Q(< m). Hence, (pa(2), ¢.(2)) is a Padé pair of
order m. Since m is a normal index, deg ¢, (z) = m. [ ]
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Let us obtain the continued fraction expansions for
pe(z) = oz H iz 62T € Q7))

corresponding to the Fibonacci words é = (a,b) with (a,b) = (1,0) and
(a,b) = (0,1). As in §3, we use the notations ¢ and Z for them. The proofs
in the following theorems are given only for ¢, since the proof is similar for &.
In [3], J. Tamura gave the Jacobi-Perron-Parusnikov expansion for a vector
consisting of Laurent series with coefficients given by certain substitutions,
which contains the following as its special case, cf. the footnote, p. 301 [3]:

Proposition 3 [t holds that
(z _ 1)%(2) — [ 0; Zf—27Zf—17Zf07Zf17Zf27 e ]

Theorem 7 We have the following admissible continued fraction for p.(z)
and @=(2):

S‘QE(Z) = [0;a17a27a37"']
es(z) = [0;a,a, a5, |
with
1
ay =z, ag = —2z+1, a3:—§(z—|—1)
Azasz = (1) AT 4 AT )
1
dopas = (—1)"71 z—1
2n+3 ( ) fnfn—l—l( )
(n: 1727... )7
and
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Proof. We put

(9n = [0 ;an7an+17an+27_,, ] (n 2 _2)
2, fn 20
¢ = (_1)n_1fnz + fo-1Sn + [7 0011 (n>1)
z—1
—1

n = —1 n-1 - n > 1
g ( ) fnfn—l—l + fg‘gn-l-l ( N )

n = (=D)TRERT 4T ) (2 )
d, = (=1)"" : (z=1) (n=1).

fnfn-l-l

Then we have

1
Using
0_1 = an -I' en-l—l

n

and Proposition 3, we get

pls) = T (0af 1) <)
= [0; (z—1)673]
= 05 e (= D0L] (1 (= 1o <)
-1
= 0 s
0
= [05 =, _Zl+_;0]
= [0; =, —z+1+1+fzia?%]
() =2
= [0; 2, —z+41, %ﬁ{;gl]
= [0; 2, —z+41, %10:(91]
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407" 42
z—1 ]

4z + 2 + 46,
z—1 I

1
= [0; 2, —z+41, —§(Z—|-1),
1
= [0; 2, —z+41, —§(Z—|-1),
Hence, we have

) =105 2 —=41 5G40, a1 (& <) (30

From (35) and (36), it follows that

—_

f(Z) = [07 <, _Z—I_lv __(Z—I_l)clv d17 cry Cp, dn7 fn-l—l]

— D

= [0; 2 —2z+41, —=(z4+1)a, di, ¢, dy, -+ ]

[N]

which completes the proof for ¢.(z).
Starting from the identity pz(z) = 1;_012 instead of ¢.(z) = j_;i, we can
get the admissible continued fraction for @=(z) by the similar fashion as

above. ]

Theorem 8 The numerator p, := p,(2) (p, := P,(z), resp.) and the de-
nominator g, 1= qn(z) (4, = G,(2), resp.) of the n-th convergent of the
continued fraction expansion for ¢.(z) (and p=(z), resp.) are given as fol-
lows:

pp=0, pp=1, pp=—2+1
=1, ==z, q2:—22—|—2—|—1

1 _ _
Pone1 = 5 (02 M ez g )
n—1

pro = (1) { fucrz/(coz T eI TP b ey )
— fam2(eo T Fez Tt 4 e )} (2 - 1)

(o1 = f:_l (zIm = 1)
Gon = (=) {foa 2 (2T 4 2T )
= faa(FTT 4T 1)
(n:2737"' ) )
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and
}_70 = 0 9 }_71 = 1
=1, q= 2
1
(Born T e B )

Pop—o =
n—2

Poney = (=1)""H{ fazz (Boz " 422 4 e, )
— fams(Goz T+ E T B L) (2 = 1)+ fase

Ts =~ —1)
Dy = (1) fumpz (T 2P
— fama(zn T 4 2T 1))
(n:2737"' ) )

where py, and py,_, in the above are polynomials since the numerators are
divisible by z — 1.

Proof. The values for pg, p1,p2, qo, ¢1, g2 are obtained from Theorem 7 by
direct calculations. For a general n, we can prove the formula for p,,¢q, by
induction on n using (31) and Theorem 7 without difficulty. |

Remark 4 From Proposition 2 and Theorem 8, it follows that the set of
normal indices for p.(z) (and ¢=(z), resp.) is {0, fo = fi —1, fi =
=1 fo =1, -} A0, i =fi—1 fo, s—1, - } resp.)
which together with Proposition 1 give another proof of the third cases of
Theorem 2 with n = 0.

Remark 5 In [/], the continued fraction expansion for Laurent series cor-
responding to infinite words over {a,b} generated by substitutions of “Fi-
bonacci type” are considered, where a, b will be considered as independent
variables.
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