Hankel determinants for the Fibonacci word and Padé approximation

Acta Arithmetica LXXXIX. 2 (1999), pp.123-161

Teturo KAMAE*Jun-ichi TAMURA ${ }^{\dagger}$ Zhi-Ying WEN ${ }^{\star}{ }^{\ddagger}$

1 Introduction

The aim of the paper is to give a concrete and interesting example of the Padé approximation theory as well as to develop the general theory so as to find a quantitative relation between the Hankel determinant and the Padé pair. Our example is the formal power series related to the Fibonacci word.

The Fibonacci word $\varepsilon(a, b)$ on an alphabet $\{a, b\}$ is the infinite sequence

$$
\begin{align*}
\varepsilon(a, b) & =\hat{\varepsilon}_{0} \hat{\varepsilon}_{1} \cdots \hat{\varepsilon}_{n} \cdots \tag{1}\\
& :=\text { abaababaabaab } \cdots \quad\left(\hat{\varepsilon}_{n} \in\{a, b\}\right)
\end{align*}
$$

which is the fixed point of the substitution

$$
\sigma: \begin{array}{ll}
a & \rightarrow a b \\
b & \rightarrow a \tag{2}
\end{array}
$$

[^0]The Hankel determinants for an infinite word (or sequence) $\varphi=$ $\varphi_{0} \varphi_{1} \varphi_{2} \cdots\left(\varphi_{n} \in \mathbf{K}\right)$ over a field \mathbf{K} are the following

$$
\begin{align*}
H_{n, m}(\varphi) & :=\operatorname{det}\left(\varphi_{n+i+j}\right)_{0 \leq i, j \leq m-1} \tag{3}\\
& (n=0,1,2, \cdots ; m=1,2, \cdots) .
\end{align*}
$$

It is known [2] that the Hankel determinants play an important role in the theory of Padé approximation for the formal Laurent series

$$
\begin{equation*}
\varphi(z)=\sum_{k=0}^{\infty} \varphi_{k} z^{-k+h} . \tag{4}
\end{equation*}
$$

Let $\mathbf{K}\left(\left(z^{-1}\right)\right)$ be the set of formal Laurent series φ as above of z with coefficients in \mathbf{K} and $h \in \mathbf{Z}$ providing a non-Archimedean norm $\|\varphi\|:=$ $\exp \left(-k_{0}+h\right)$ with $k_{0}=\inf \left\{k ; \varphi_{k} \neq 0\right\}$. Let φ be as above with $h=-1$. We say that a pair $(P, Q) \in \mathbf{K}[z]^{2}$ of polynomials of z over \mathbf{K} is a Padé pair of order m for φ if

$$
\begin{equation*}
\|Q \varphi-P\|<\exp (-m), \quad Q \neq 0, \quad \operatorname{deg} Q \leq m \tag{5}
\end{equation*}
$$

A Padé pair (P, Q) of order m for φ always exists and the rational function $P / Q \in \mathbf{K}(z)$ is uniquely determined for each $m=0,1,2, \cdots$. The element $P / Q \in \mathbf{K}(z)$ with P, Q satisfying (5) is called the m-th diagonal Padé approximation for φ. A number m is called a normal index if (5) implies $\operatorname{deg} Q=m$. Note that P / Q is irreducible if m is a normal index, although it can be reducible for a general m. A normal Padé pair (P, Q), i.e., $\operatorname{deg} Q$ is a normal index, is said to be normalized if the leading coefficient of Q is equal to 1 . It is a classical result that m is a normal index for φ if and only if the Hankel determinant $\operatorname{det}\left(\varphi_{i+j}\right)_{0 \leq i, j \leq m-1}$ is nonzero. Note that 0 is always a normal index and the determinant for the empty matrix is considered as 1 , so that the above statement remains valid for $m=0$.

We succeed in obtaining a quantitative relation between the Hankel determinant and the normalized Padé pair. Namely,

$$
\begin{equation*}
\operatorname{det}\left(\varphi_{i+j}\right)_{0 \leq i, j \leq m-1}=(-1)^{[m / 2]} \prod_{z ; Q(z)=0} P(z) \tag{6}
\end{equation*}
$$

for any normal index m with the normalized Padé pair (P, Q), where $\prod_{z ; Q(z)=0}$ indicates a product taken over all zeroes z of Q with their multiplicity (Theorem 6).

We are specially interested in the Pade approximation theory applied to the Fibonacci words $\varepsilon:=\varepsilon(1,0)$ and $\bar{\varepsilon}:=\varepsilon(0,1)$, where 0,1 are considered as elements in the field \mathbf{Q}, since we have the following remark.

Remark 1 Let M be a matrix of size $m \times m$ with entries consisting of two independent variables a and b. Then, det $M=(a-b)^{m-1}\left(p a+(-1)^{m-1} q b\right)$, where p and q are integers defined by

$$
p=\left.\operatorname{det} M\right|_{a=1, b=0}, \quad q=\left.\operatorname{det} M\right|_{a=0, b=1} .
$$

Proof of Remark 1. Subtracting the first column vector from all the other column vectors of M, we see that det M is divisible by $(a-b)^{m-1}$ as a polynomial in $\mathbf{Z}[a, b]$. Hence, $\operatorname{det} M=(a-b)^{m-1}(x a+y b)$ for integers x, y. Setting $(a, b)=(1,0),(0,1)$, we get the assertion.

In Section 2, we study the structures of the Fibonacci word, in particular, its repetition property. The notion of singular words introduced in Z.-X. Wen and Z.-Y. Wen [5] plays an important role.

In Section 3, we give the value of the Hankel determinants $H_{n, m}(\varepsilon)$ and $H_{n, m}(\bar{\varepsilon})$ for the Fibonacci words in some closed forms. It is a rare case where the Hankel determinants are determined completely. Another such case is for the Thue-Morse sequence φ consisting of 0 and 1 , where the Hankel determinants $H_{m, n}(\varphi)$ modulo 2 are obtained, and the function $H_{m, n}(\varphi)$ of (m, n) is proved to be 2-dimensionally automatic (J.-P. Allouche, J. Peyrière, Z.-X. Wen and Z.-Y. Wen [1]).

In Section 4, we consider the self-similar property of the values $H_{n, m}(\varepsilon)$ and $H_{n, m}(\bar{\varepsilon})$ for the Fibonacci words. The quarter plane $\{(n, m) ; n \geq 0, m \geq$ $1\}$ is tiled by 3 kinds of tiles with the values $H_{n, m}(\varepsilon)$ and $H_{n, m}(\bar{\varepsilon})$ on it with various scales.

In Section 5, we develop a general theory of Padé approximation. We also obtain the admissible continued fraction expansion of φ_{ε} and $\varphi_{\bar{\varepsilon}}$, the formal Laurent series (4) with $h=-1$ for the sequences ε and $\bar{\varepsilon}$, and determine all the convergents p_{k} / q_{k} of the continued fractions. It is known in general that the set of the convergents p_{k} / q_{k} for φ is the set of diagonal Padé approximations and the set of degrees of q_{k} 's in z coincides with the set of normal indices for φ.

2 Structures of the Fibonacci word

In what follows, σ denotes the substitution defined by (2), and

$$
\hat{\varepsilon}=\hat{\varepsilon}_{0} \hat{\varepsilon}_{1} \hat{\varepsilon}_{2} \cdots \hat{\varepsilon}_{n} \cdots \quad\left(\hat{\varepsilon}_{n} \in\{a, b\}\right)
$$

is the (infinite) Fibonacci word (1). A finite word over $\{a, b\}$ is sometimes considered to be an element of the free group generated by a and b with their inverses a^{-1} and b^{-1}. For $n=0,1,2, \cdots$, we define the n-th Fibonacci word F_{n} and the n-th singular word W_{n} as follows:

$$
\begin{align*}
& F_{n}:=\sigma^{n}(a)=\sigma^{n+1}(b) \\
& W_{n}:=\beta_{n} F_{n} \alpha_{n}^{-1}, \tag{7}
\end{align*}
$$

where we put

$$
\alpha_{n}=\beta_{m}= \begin{cases}a & (n: \text { even, } m: \text { odd }) \tag{8}\\ b & (n: \text { odd }, m: \text { even })\end{cases}
$$

and we define W_{-2} to be the empty word and $W_{-1}:=a$ for convenience. Let $\left(f_{n} ; n \in \mathbf{Z}\right)$ be the Fibonacci sequence:

$$
\begin{align*}
& f_{n+2}=f_{n+1}+f_{n} \quad(n \in \mathbf{Z}) \tag{9}\\
& f_{-1}=f_{0}=1
\end{align*}
$$

Then, we have $\left|F_{n}\right|=\left|W_{n}\right|=f_{n}(n \geq 0)$, where $|\xi|$ denotes the length of a finite word ξ.

For a finite word $\xi=\xi_{0} \xi_{1} \cdots \xi_{n-1}$ and a finite or infinite word $\eta=$ $\eta_{0} \eta_{1} \eta_{2} \cdots$ over an alphabet, we denote

$$
\begin{equation*}
\xi \prec_{k} \eta \tag{10}
\end{equation*}
$$

if $\xi=\eta_{k} \eta_{k+1} \cdots \eta_{k+n-1}$. We simply denote

$$
\begin{equation*}
\xi \prec \eta \tag{11}
\end{equation*}
$$

and say that ξ is a subword of η if $\xi \prec_{k} \eta$ holds for some k. For a finite word $\xi=\xi_{0} \xi_{1} \cdots \xi_{n-1}$ and i with $0 \leq i<n$, we denote the i-th cyclic permutation of ξ by $C_{i}(\xi):=\xi_{i} \xi_{i+1} \cdots \xi_{n-1} \xi_{0} \xi_{1} \cdots \xi_{i-1}$. We also denote $C_{i}(\xi):=C_{i^{\prime}}(\xi)$ with $i^{\prime}:=i-n[i / n]$ for any $i \in \mathbf{Z}$.

In this section, we study the structure of the Fibonacci word $\hat{\varepsilon}$ and discuss the repetition property. The following two lemmas are obtained by Z.-X. Wen and Z.-Y. Wen [5] and we omit the proofs.

Lemma 1 We have the following statements (1)-(10):
(1) $\hat{\varepsilon}=F_{n} F_{n-1} F_{n} F_{n+1} F_{n+2} \cdots(n \geq 1)$,
(2) $F_{n}=F_{n-1} F_{n-2}=F_{n-2} F_{n-1} \beta_{n}^{-1} \alpha_{n}^{-1} \beta_{n} \alpha_{n}(n \geq 2)$,
(3) $F_{n} F_{n} \prec \hat{\varepsilon}(n \geq 3)$,
(4) $\hat{\varepsilon}=W_{-1} W_{0} W_{1} W_{2} W_{3} \cdots$,
(5) $W_{n}=W_{n-2} W_{n-3} W_{n-2}(n \geq 1)$,
(6) W_{n} is a palindrome, that is, W_{n} stays invariant under reading the letters from the end $(n \geq-2)$,
(7) $C_{i}\left(F_{n}\right) \prec \hat{\varepsilon}\left(n \geq 0,0 \leq i<f_{n}\right)$,
(8) $C_{i}\left(F_{n}\right) \neq C_{j}\left(F_{n}\right)$ for any $i \neq j$, moreover, they are different already before their last places $\left(n \geq 1,0 \leq i<f_{n}\right)$,
(9) $W_{n} \neq C_{i}\left(F_{n}\right)\left(n \geq 0,0 \leq i<f_{n}\right)$,
(10) $\xi \prec \hat{\varepsilon}$ and $|\xi|=f_{n}$ imply that either $\xi=C_{i}\left(F_{n}\right)$ for some i with $0 \leq i<f_{n}$ or $\xi=W_{n}(n \geq 0)$.

Lemma 2 For any $k \geq-1$, we have the decomposition of $\hat{\varepsilon}$ as follows:

$$
\hat{\varepsilon}=\left(W_{-1} W_{0} \cdots W_{k-1}\right) W_{k} \gamma_{0} W_{k} \gamma_{1} \cdots W_{k} \gamma_{n} \cdots
$$

where all the occurrences of W_{k} in $\hat{\varepsilon}$ are picked up and γ_{n} is either W_{k+1} or W_{k-1} corresponding to $\hat{\varepsilon}_{n}$ is a or b, respectively. That is, any two different occurrences of W_{k} do not overlap and are separated by W_{k+1} or W_{k-1}.

We introduce another method to discuss the repetition property of $\hat{\varepsilon}$. Let \mathbf{N} be the set of nonnegative integers. For $n \in \mathbf{N}$, let

$$
\begin{align*}
& n=\sum_{i=0}^{\infty} \tau_{i}(n) f_{i} \tag{12}\\
& \tau_{i}(n) \in\{0,1\} \text { and } \tau_{i}(n) \tau_{i+1}(n)=0 \quad(i \in \mathbf{N})
\end{align*}
$$

be the regular expression of n in the Fibonacci base due to Zeckendorf. For $m, n \in \mathbf{N}$ and a positive integer k, we denote

$$
\begin{equation*}
m \equiv_{k} n \tag{13}
\end{equation*}
$$

if $\tau_{i}(m)=\tau_{i}(n)$ holds for all $i<k$.
Lemma 3 It holds that $\hat{\varepsilon}_{n}=a$ if and only if $\tau_{0}(n)=0$.

Proof. We use induction on n. The lemma holds for $n=0,1,2$. Assume that the lemma holds for any $n \in \mathbf{N}$ with $n<f_{k}$ for some $k \geq 2$. Take any $n \in \mathbf{N}$ with $f_{k} \leq n<f_{k+1}$. Then, since $0 \leq n-f_{k}<f_{k-1}$, we have $n=$ $\sum_{i=0}^{k-1} \tau_{i}\left(n-f_{k}\right) f_{i}+f_{k}$, which gives the regular expression if $\tau_{k-1}\left(n-f_{k}\right)=0$. If $\tau_{k-1}\left(n-f_{k}\right)=1$, then we have the regular expression $n=\sum_{i=0}^{k-2} \tau_{i}(n-$ $\left.f_{k}\right) f_{i}+f_{k+1}$. In any case, we have $\tau_{0}(n)=\tau_{0}\left(n-f_{k}\right)$. On the other hand, since $\hat{\varepsilon}$ starts with $F_{k} F_{k-1}$ by Lemma 1, we have $\hat{\varepsilon}_{n}=\hat{\varepsilon}_{n-f_{k}}$. Hence, $\hat{\varepsilon}_{n}=a$ if and only if $\tau_{0}(n)=0$ by the induction hypothesis. Thus, we have the lemma for any $n<f_{k+1}$, and by induction, we complete the proof.

Lemma 4 Let $n=\sum_{i=0}^{\infty} n_{i} f_{i}$ with $n_{i} \in\{0,1\}(i \in \mathbf{N})$. Assume that $n_{i} n_{i+1}=0$ for $0 \leq i<k$. Then, $n_{i}=\tau_{i}(n)$ holds for $0 \leq i<k$.

Proof. If there exists $i \in \mathbf{N}$ such that $n_{i} n_{i+1}=1$, take the maximum i_{0} for such i 's. Take the maximum j such that $n_{i_{0}+1}=n_{i_{0}+3}=n_{i_{0}+5}=\cdots=$ $n_{j}=1$. Then, replacing $f_{i_{0}}+f_{i_{0}+1}+f_{i_{0}+3}+f_{i_{0}+5}+\cdots+f_{j}$ by f_{j+1}, we have a new expression of n :

$$
\begin{aligned}
n & =\sum_{i=0}^{\infty} n_{i}^{\prime} f_{i} \\
& :=\sum_{i=0}^{i_{i}-1} n_{i} f_{i}+f_{j+1}+\sum_{i=j+3}^{\infty} n_{i} f_{i}
\end{aligned}
$$

This new expression is unchanged at the indices less than k, and is either regular or has a smaller maximum index i with the property $n_{i}^{\prime} n_{i+1}^{\prime}=1$. By continuing this procedure, we finally get the regular expression of n, which is unchanged at the indices less than k from the original expression. Thus, we have $n_{i}=\tau_{i}(n)$ for any $0 \leq i<k$.

Lemma 5 For any $n \in \mathbf{N}$ and $k \geq 0, \tau_{0}\left(n+f_{k}\right) \neq \tau_{0}(n)$ holds if and only if either $n \equiv_{k+2} f_{k+1}-2$ or $n \equiv_{k+2} f_{k+1}-1$. Moreover,

$$
\hat{\varepsilon}_{n+f_{k}}-\hat{\varepsilon}_{n}= \begin{cases}(-1)^{k-1}(a-b) & \left(n \equiv_{k+2} f_{k+1}-2\right) \\ (-1)^{k}(a-b) & \left(n \equiv_{k+2} f_{k+1}-1\right),\end{cases}
$$

where a and b are considered as independent variables.
Proof. If $k=0$, we can verify Lemma 5 by a direct calculation.

Assume that $k \geq 1$ and $\tau_{k}(n)=0$, then we have an expression of $n+f_{k}$:

$$
n+f_{k}=\sum_{i=0}^{k-1} \tau_{i}(n) f_{i}+f_{k}+\sum_{i=k+1}^{\infty} \tau_{i}(n) f_{i} .
$$

Then by Lemma 4, we have $\tau_{0}\left(n+f_{k}\right)=\tau_{0}(n)$ if $k \geq 2$ or if $k=1$ and $\tau_{0}(n)=0$. In the case where $k=1, \tau_{0}(n)=1$ and $\tau_{2}(n)=0$, since

$$
n+f_{k}=1+2+\sum_{i=3}^{\infty} \tau_{i}(n) f_{i}=f_{2}+\sum_{i=3}^{\infty} \tau_{i}(n) f_{i}
$$

we have $\tau_{0}\left(n+f_{k}\right)=0$ by Lemma 4. On the other hand, in the case where $k=1, \tau_{0}(n)=1$ and $\tau_{2}(n)=1$, since

$$
n+f_{k}=1+2+3+\sum_{i=4}^{\infty} \tau_{i}(n) f_{i}=f_{0}+f_{3}+\sum_{i=4}^{\infty} \tau_{i}(n) f_{i}
$$

we have $\tau_{0}\left(n+f_{k}\right)=1$ by Lemma 4 .
Thus, in the case where $k \geq 1$ and $\tau_{k}(n)=0, \tau_{0}\left(n+f_{k}\right) \neq \tau_{0}(n)$ if and only if $k=1, \tau_{0}(n)=1$ and $\tau_{2}(n)=0$, or equivalently, if and only if $n \equiv_{k+2} f_{k+1}-2$. Note that $n \equiv_{k+1} f_{k+1}-1$ does not happen in this case.

Now assume that $k \geq 1$ and $\tau_{k}(n)=1$. Take the minimum $j \geq 0$ such that $\tau_{k}(n)=\tau_{k-2}(n)=\tau_{k-4}(n)=\cdots=\tau_{j}(n)=1$. Then since $2 f_{i}=f_{i+1}+f_{i-2}$ for any $i \in \mathbf{N}$, we have an expression of $n+f_{k}$:

$$
\begin{align*}
& n+f_{k}=\sum_{i=0}^{j-3} \tau_{i}(n) f_{i}+f_{j-2} \tag{14}\\
& +f_{j+1}+f_{j+3}+f_{j+5}+\cdots+f_{k+1}+\sum_{i=k+2}^{\infty} \tau_{i}(n) f_{i}
\end{align*}
$$

where the first term in the right-hand side vanishes if $j=0,1,2$. Hence by Lemma 4, $\tau_{0}\left(n+f_{k}\right)=\tau_{0}(n)$ if $j \geq 4$.

In the case where $j=3, \tau_{0}\left(n+f_{k}\right)=\tau_{0}(n)$ holds if $\tau_{0}(n)=0$ by (14) and Lemma 4. If $\tau_{0}(n)=1$, then by (14) and Lemma 4, $\tau_{0}\left(n+f_{k}\right)=0$. Thus, in the case where $j=3, \tau_{0}\left(n+f_{k}\right) \neq \tau_{0}(n)$ if and only if $\tau_{0}(n)=1$.

If $j=2$, then by the assumption on j, we have $\tau_{0}(n)=0$. On the other hand, since $f_{0}=1$, by (14) and Lemma 4, we have $\tau_{0}\left(n+f_{k}\right)=1$. Thus, $\tau_{0}\left(n+f_{k}\right) \neq \tau_{0}(n)$.

If $j=1$, then we have $\tau_{0}(n)=0$ since $\tau_{1}(n)=1$ by the assumption on j. On the other hand, since $f_{-1}=1$, we have $\tau_{0}\left(n+f_{k}\right)=1$ by (14) and Lemma 4. Thus, $\tau_{0}\left(n+f_{k}\right) \neq \tau_{0}(n)$.

If $j=0$, then by the assumption on $j, \tau_{0}(n)=1$. On the other hand, since $f_{-2}=0$, we have $\tau_{0}\left(n+f_{k}\right)=0$ by (14) and Lemma 4. Thus, $\tau_{0}\left(n+f_{k}\right) \neq \tau_{0}(n)$.

By combining all the results as above, we get the first part.
The second part follows from Lemma 3 and the fact that for any $k \geq 0$,

$$
f_{k+1}-1=f_{k}+f_{k-2}+\cdots+f_{i}
$$

with $i=0$ if k is even and $i=1$ if k is odd. Hence,

$$
\tau_{0}\left(f_{k+1}-1\right)=\tau_{0}\left(f_{h+1}-2\right)= \begin{cases}a & (k: \text { odd }, h: \text { even }) \\ b & (k: \text { even }, h: \text { odd })\end{cases}
$$

Lemma 6 For any $k \geq 0, W_{k} \prec_{n} \hat{\varepsilon}$ if and only if $n \equiv_{k+2} f_{k+1}-1$.
Proof. By Lemma 2, the smallest $n \in \mathbf{N}$ such that $W_{k} \prec_{n} \hat{\varepsilon}$ is

$$
f_{-1}+f_{0}+f_{1}+\cdots+f_{k-1}=f_{k+1}-1
$$

which is the smallest $n \in \mathbf{N}$ such that $n \equiv_{k+2} f_{k+1}-1$. Let $n_{0}:=f_{k+1}-1$. Then, the regular expression of n_{0} is

$$
n_{0}=f_{k}+f_{k-2}+f_{k-4}+\cdots+f_{d},
$$

where $d=\left(1-(-1)^{k}\right) / 2$. The next n with $n \equiv_{k+2} n_{0}$ is clearly

$$
n=f_{k+2}+f_{k}+f_{k-2}+\cdots+f_{d}
$$

which is, by Lemma 2, the next n such that $W_{k} \prec_{n} \hat{\varepsilon}$ since $f_{k}+f_{k+1}=f_{k+2}$.
For $i=1,2,3, \cdots$, let

$$
n_{i}=n_{0}+\sum_{j=0}^{\infty} \tau_{j}(i) f_{k+2+j} .
$$

Then, it is easy to see that n_{i} is the i-th n after n_{0} such that $n \equiv_{k+2} f_{k+1}-1$. We prove by induction on i that n_{i} is the i-th n after n_{0} such that $W_{k} \prec_{n} \hat{\varepsilon}$. Assume that it is so for i. Then by Lemma $4, W_{k} \gamma_{i} W_{k} \prec_{n_{i}} \hat{\varepsilon}$. Hence, the next n after n_{i} such that $W_{k} \prec_{n} \hat{\varepsilon}$ is $n_{i}+f_{k}+\left|\gamma_{i}\right|$. Thus, we have

$$
\begin{aligned}
n_{i}+f_{k}+\left|\gamma_{i}\right| & =n_{i}+f_{k}+f_{k+1} 1_{\hat{\varepsilon}_{i}=a}+f_{k-1} 1_{\hat{\epsilon}_{i}=b} \\
& =n_{i}+f_{k+2} 1_{\tau_{0}(i)=0}+f_{k+1} 1_{\tau_{0}(i)=1} \\
& =n_{i+1},
\end{aligned}
$$

which completes the proof.

Lemma 7 Let $k \geq 0$ and $n, i \in \mathbf{N}$ satisfy that $n \equiv_{k+1} i$.
(1) If $0 \leq i<f_{k}$, then, $\tau_{0}(n+j)=\tau_{0}(i+j)$ holds for any $j=0,1, \cdots, f_{k+2}-$ $i-3$.
(2) If $f_{k} \leq i<f_{k+1}$, then, $\tau_{0}(n+j)=\tau_{0}(i+j)$ holds for any $j=$ $0,1, \cdots, f_{k+3}-i-3$.

Proof. (1) We prove the lemma by induction on k. The assertion holds for $k=0$. Let $k \geq 1$ and assume that the assertion is valid for $k-1$. For $j=0,1, \cdots, f_{k}-i, n+j \equiv_{k} i+j$ holds and hence, $\tau_{0}(n+j)=\tau_{0}(i+j)$ holds. Let $j_{0}=f_{k}-i$. Then, since $n+j_{0} \equiv_{k} i+j_{0} \equiv_{k} 0$, we have $\tau_{0}\left(n+j_{0}+j\right)=\tau_{0}\left(i+j_{0}+j\right)=\tau_{0}(j)$ for any $j=0,1, \cdots, f_{k+1}-3$ by the the induction hypothesis. Thus, $\tau_{0}(n+j)=\tau_{0}(i+j)$ holds for any $j=0,1, \cdots, f_{k+2}-i-3$. This proves (1).
(2) In this case, $\tau_{k+1}(n)=0$ holds. Hence, we have $n \equiv_{k+2} i$. Therefore, we can apply (1) with $k+1$ for k. Thus, we get (2)

Let $n, m, i \in \mathbf{N}$ with $m \geq 2$ and $0<i<m$. We call n an (m, i)-shift invariant place in $\hat{\varepsilon}$ if

$$
\hat{\varepsilon}_{n} \hat{\varepsilon}_{n+1} \cdots \hat{\varepsilon}_{n+m-1}=\hat{\varepsilon}_{n+i} \hat{\varepsilon}_{n+i+1} \cdots \hat{\varepsilon}_{n+i+m-1}
$$

We call n an m-repetitive place in $\hat{\varepsilon}$ if there exist $i, j \in \mathbf{N}$ with $i>0$ and $i+j<m$ such that $n+j$ is an (m, i)-shift invariant place in $\hat{\varepsilon}$. Let \mathcal{R}_{m} be the set of m-repetitive places in $\hat{\varepsilon}$.

Lemma 8 (1) Let $n \equiv_{k+1} 0$ for some $k \geq 1$. Then, n is an $\left(f_{k+1}-2, f_{k}\right)$ shift invariant place in $\hat{\varepsilon}$.
(2) Let $n \equiv_{k+1} f_{k}$ for some $k \geq 2$. Then, n is an $\left(f_{k+1}-2, f_{k-1}\right)$-shift invariant place in $\hat{\varepsilon}$.

Proof. (1) Since the least $i \geq n$ such that either $i \equiv_{k+2} f_{k+1}-1$ or $i \equiv{ }_{k+2} f_{k+1}-2$ is not less than $n+f_{k+1}-2$, by Lemma 5 , we have

$$
\hat{\varepsilon}_{n} \hat{\varepsilon}_{n+1} \cdots \hat{\varepsilon}_{n+f_{k+1}-3}=\hat{\varepsilon}_{n+f_{k}} \hat{\varepsilon}_{n+f_{k}+1} \cdots \hat{\varepsilon}_{n+f_{k}+f_{k+1}-3} .
$$

(2) Since the minimum $i \geq n$ such that either $i \equiv_{k+1} f_{k}-1$ or $i \equiv_{k+1} f_{k}-2$ is $n+f_{k+1}-2$, by Lemma 5 , we have

$$
\hat{\varepsilon}_{n} \hat{\varepsilon}_{n+1} \cdots \hat{\varepsilon}_{n+f_{k+1}-3}=\hat{\varepsilon}_{n+f_{k-1}} \hat{\varepsilon}_{n+f_{k-1}+1} \cdots \hat{\varepsilon}_{n+f_{k-1}+f_{k+1}-3} .
$$

Theorem 1 The pair (n, m) of nonnegative integers satisfies $n \in \mathcal{R}_{m}$ if one of the following two conditions holds:
(1) $f_{k}+1 \leq m \leq f_{k+1}-2, n-i \equiv_{k+1} 0$ and $i \leq n$ for some $k \geq 1$ and $i \in \mathbf{Z}$ with $f_{k}+1 \leq m+i \leq f_{k+1}-2$.
(2) $f_{k-1}+1 \leq m \leq f_{k+1}-2, i \leq n$ and $n-i \equiv_{k+1} f_{k}$ for some $k \geq 2$ and $i \in \mathbf{Z}$ with $f_{k-1}+1 \leq m+i \leq f_{k+1}-2$.

Remark 2 The "if and only if" statement actually holds in Theorem 1 in place of "if" since we will prove later that $H_{n, m} \neq 0$ if none of the conditions (1) and (2) hold.

Proof of Theorem 1. Assume (1) and $i \geq 0$. By (1) of Lemma 8, $n-i$ is an $\left(f_{k+1}-2, f_{k}\right)$-shift invariant place. Then, n is an $\left(m, f_{k}\right)$-shift invariant place since $i+m \leq f_{k+1}-2$. Thus, $n \in \mathcal{R}_{m}$ as $f_{k}<m$.

Assume (1) and $i<0$. Then, since $n-i$ is an $\left(f_{k+1}-2, f_{k}\right)$-shift invariant place and $m \leq f_{k+2}-2$, it is an $\left(m, f_{k}\right)$-shift invariant place. Moreover, since $f_{k}-i<m, n$ is a m-repetitive place.

Assume (2) and $i \geq 0$. Then, $n-i$ is an $\left(f_{k+1}-2, f_{k-1}\right)$-shift invariant place by (2) of Lemma 8. Then, n is an (m, f_{k-1})-shift invariance place since $i+m \leq f_{k+1}-2$. Thus, n is an m-repetitive place as $f_{k-1}<m$.

Assume (2) and $i<0$. Then, since $n-i$ is an $\left(f_{k+1}-2, f_{k-1}\right)$-shift invariant place and $m \leq f_{k+1}-2$, it is an (m, f_{k-1})-shift invariant place. Then, n is an m-repetitive place, since $f_{k-1}-i<m$. Thus, $n \in \mathcal{R}_{m}$.

Corollary 1 The place 0 is m-repetitive for an $m \geq 2$ if $m \notin \cup_{k=1}^{\infty}\left\{f_{k}-\right.$ $\left.1, f_{k}\right\}$.

Remark 3 The "if and only if" statement actually holds in Corollary 1 in place of "if" since we will prove later that $H_{0, m} \neq 0$ if $m \in \cup_{k=1}^{\infty}\left\{f_{k}-1, f_{k}\right\}$.

Proof of Corollary 1. Let $i=0$ in (1) of Theorem 1. Then, 0 is $m-$ repetitive if $f_{k}+1 \leq m \leq f_{k+1}-2$ for some $k \geq 1$.

Corollary 2 Let $k \geq 2$. The place n is f_{k}-repetitive if

$$
W_{k} \prec \hat{\varepsilon}_{n+1} \hat{\varepsilon}_{n+2} \cdots \hat{\varepsilon}_{n+2 f_{k}-3} .
$$

Proof. By (2) of Theorem 1 , for any $k \geq 2, n$ is an f_{k}-repetitive place if $n-i \equiv_{k+1} f_{k}$ for some i with $i \leq n$ and $-f_{k-2}+1 \leq i \leq f_{k-1}-2$. Since the condition $n-i \equiv_{k+1} f_{k}$ is equivalent to $n-i \equiv_{k+2} f_{k}$ and there is no carry in addition of $-i$ to both sides of $n \equiv_{k+2} f_{k}+i$, the condition $n-i \equiv_{k+1} f_{k}$ is equivalent to $n \equiv_{k+2} f_{k}+i$. Hence, the place n is f_{k}-repetitive if $n \equiv_{k+2} j$ for some j with $f_{k-1}+1 \leq j \leq f_{k+1}-2$. By Lemma 6 , this condition is equivalent to that W_{k} starts at one of the places in $\left\{n+1, n+2, \cdots, f_{k}-2\right\}$, which completes the proof.

3 Hankel determinants

The aim of this section is to find the value of the Hankel determinants

$$
\begin{aligned}
H_{n, m} & :=H_{n, m}(\varepsilon)=\operatorname{det}\left(\varepsilon_{n+i+j}\right)_{0 \leq i, j \leq m-1} \\
\bar{H}_{n, m} & :=H_{n, m}(\bar{\varepsilon})=\operatorname{det}\left(\bar{\varepsilon}_{n+i+j}\right)_{0 \leq i, j \leq m-1} \\
(n & =0,1,2, \cdots ; m=1,2,3, \cdots)
\end{aligned}
$$

for the Fibonacci word $\varepsilon(a, b)$ at $(a, b)=(1,0)$ and $(a, b)=(0,1)$:

$$
\begin{aligned}
& \varepsilon:=\varepsilon(1,0)=10110101101101 \cdots, \\
& \bar{\varepsilon}:=\varepsilon(0,1)=01001010010010 \cdots .
\end{aligned}
$$

It is clear that $H_{n, m}(\varepsilon(a, b))=0$ if n is the m-repetitive place in $\varepsilon(a, b)$, where a, b are considered to be two independent variables, so that, in general, $H_{n, m}(\varepsilon(a, b))$ becomes a polynomial in a and b as is stated in Remark 1.

In the following lemmas, theorems and corollary, we give statements for ε and $\bar{\varepsilon}$ parallelly, while we give the proofs only for ε since the proofs for $\bar{\varepsilon}$ are similar to those for ε. The only difference between them is the starting point, Lemma 5 , where $a-b$ in the right-hand side is 1 for ε and -1 for $\bar{\varepsilon}$.

We use the following notation: for any subset S of $\{0,1,2,3,4,5\}, \chi(k: S)$ is a function on $k \in \mathbf{Z}$ such that

$$
\chi(k: S)= \begin{cases}-1 & (\text { if } k \equiv s(\bmod 6) \text { for some } s \in S) \\ 1 & \text { (otherwise) }\end{cases}
$$

The following corollary follows from Theorem 1.
Corollary $3 H_{n, m}=0$ if one of the conditions (1), (2) in Theorem 1 is satisfied. The same statement holds for $\bar{H}_{n, m}$.
Lemma 9 For any $k \geq 2$, we have

$$
\begin{aligned}
H_{0, f_{k}} & =\chi(k: 2,3)\left(H_{0, f_{k-1}}-(-1)^{f_{k-1}} H_{f_{k}-1, f_{k-1}}\right) \\
\bar{H}_{0, f_{k}} & =\chi(k: 1,3,4,5)\left(\bar{H}_{0, f_{k-1}}-(-1)^{f_{k-1}} \bar{H}_{f_{k}-1, f_{k-1}}\right) .
\end{aligned}
$$

Proof. The matrix $\left(\varepsilon_{i+j}\right)_{0 \leq i, j<f_{k}}$ is decomposed into three parts:

$$
\left(\varepsilon_{i+j}\right)_{0 \leq i, j<f_{k}}=\left(\begin{array}{c}
A \\
A^{\prime} \\
B
\end{array}\right)
$$

where

$$
\begin{aligned}
& A=\left(\varepsilon_{i+j}\right)_{0 \leq i<f_{k-2}, 0 \leq j<f_{k}} \\
& A^{\prime}=\left(\varepsilon_{f_{k-2}+i+j}+i\right)_{0 \leq i<f_{k-3}, 0 \leq j<f_{k}} \\
& B=\left(\varepsilon_{f_{k-1}+i+j}\right)_{0 \leq i<f_{k-2}, 0 \leq j<f_{k}}
\end{aligned}
$$

By Lemma 5, the following two subwords of ε :

$$
\varepsilon_{0} \varepsilon_{1} \cdots \varepsilon_{f_{k-2}+f_{k}-2} \text { and } \varepsilon_{f_{k-1}} \varepsilon_{f_{k-1}+1} \cdots \varepsilon_{f_{k-1}+f_{k-2}+f_{k}-2}
$$

differ only at two places, namely, $\varepsilon_{f_{k}-2} \neq \varepsilon_{f_{k-1}+f_{k}-2}$ and $\varepsilon_{f_{k}-1} \neq \varepsilon_{f_{k-1}+f_{k}-1}$. Thus, we get

$$
\begin{align*}
& B-A= \\
& \left(\begin{array}{ccccc}
\\
& & & & \\
0 & & & (-1)^{k} & (-1)^{k-1} \\
(-1)^{k-1} \\
& & \cdots & \\
& (-1)^{k} & (-1)^{k-1} & & 0
\end{array}\right. \tag{15}
\end{align*}
$$

Let $A_{0}, A_{1}, \cdots, A_{f_{k}-1}$ be the columns of the matrix $\binom{A}{A^{\prime}}$ in order from the left. Since

$$
\begin{aligned}
& \left(A_{0} A_{1} \cdots A_{f_{k-2}-2}\right)=\left(\varepsilon_{i+j}\right)_{0 \leq i<f_{k-1}, 0 \leq j<f_{k-2}-1} \\
& \left(A_{f_{k-1}} A_{f_{k-1}+1} \cdots A_{f_{k}-2}\right)=\left(\varepsilon_{f_{k-1}+i+j}\right)_{0 \leq i<f_{k-1}, 0 \leq j<f_{k-2}-1}
\end{aligned}
$$

and

$$
\varepsilon_{0} \varepsilon_{1} \cdots \varepsilon_{f_{k-2}+f_{k-1}-3}=\varepsilon_{f_{k-1}} \varepsilon_{f_{k-1}+1} \cdots \varepsilon_{f_{k-1}+f_{k-2}+f_{k-1}-3}
$$

by Lemma 5 , we get

$$
\begin{equation*}
\left(A_{0} A_{1} \cdots A_{f_{k-2}-2}\right)=\left(A_{f_{k-1}} A_{f_{k-1}+1} \cdots A_{f_{k}-2}\right) \tag{16}
\end{equation*}
$$

Thus, from (15) and (16) we obtain

$$
\begin{align*}
& H_{0, f_{k}} \\
& =\operatorname{det}\left(\begin{array}{ccccccc}
A_{0} & \cdots & A_{f_{k-1}-1} & A_{f_{k-1}} & \cdots & A_{f_{k}-2} & A_{f_{k}-1} \\
& & & & (-1)^{k} & (-1)^{k-1} & (-1)^{k-1} \\
& 0 & & \cdots & \cdots & & \\
& & (-1)^{k} & (-1)^{k-1} & & 0 &
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccccccc}
A_{0} & \cdots & A_{f_{k-1}-1} & 0 & \cdots & 0 & A_{f_{k}-1} \\
& & & & (-1)^{k} & (-1)^{k-1} & (-1)^{k-1} \\
& & & \cdots & \cdots & & \\
& & (-1)^{k} & (-1)^{k-1} & & 0 &
\end{array}\right) \tag{17}\\
& =(-1)^{(k-1) f_{k-2}(-1)^{\left[\frac{f_{k-2}}{2}\right]}} \operatorname{det}\left(A_{0} A_{1} \cdots A_{f_{k-1}-1}\right) \\
& +(-1)^{k f_{k-2}}(-1)^{\left[\frac{f_{k-2}}{2}\right]+f_{k}-1} \operatorname{det}\left(A_{f_{k}-1} A_{0} A_{1} \cdots A_{f_{k-1}-2}\right) .
\end{align*}
$$

Since

$$
\varepsilon_{0} \varepsilon_{1} \cdots \varepsilon_{2 f_{k-1}-3}=\varepsilon_{f_{k}} \varepsilon_{f_{k}+1} \cdots \varepsilon_{f_{k}+2 f_{k-1}-3}
$$

by Lemma 5, we get

$$
\operatorname{det}\left(A_{f_{k}-1} A_{0} A_{1} \cdots A_{f_{k-1}-2}\right)=\operatorname{det}\left(\varepsilon_{f_{k}-1+i+j}\right)_{0 \leq i, j<f_{k-1}}=H_{f_{k}-1, f_{k-1}}
$$

Thus we get

$$
\begin{aligned}
H_{0, f_{k}}= & (-1)^{(k-1) f_{k-2}(-1)^{\left[\frac{f_{k-2}}{2}\right]} H_{0, f_{k-1}}} \\
& +(-1)^{k f_{k-2}(-1)^{\left[\frac{f_{k-2}}{2}\right]+f_{k}-1}} H_{f_{k}-1, f_{k-1}} \\
= & \chi(k: 2,3)\left(H_{0, f_{k-1}}-(-1)^{f_{k-1}} H_{f_{k}-1, f_{k-1}}\right)
\end{aligned}
$$

where we have used the fact that

$$
(-1)^{(k-1) f_{k-2}}(-1)^{\left[\frac{f_{k-2}}{2}\right]}=\chi(k: 2,3) .
$$

Lemma 10 For $k \geq 2$, we have

$$
\begin{aligned}
H_{f_{k+1}-1, f_{k}} & =\chi(k: 1,3,4,5) H_{f_{k+1}-1, f_{k-1}} \\
\bar{H}_{f_{k+1}-1, f_{k}} & =\chi(k: 2,3) \bar{H}_{f_{k+1}-1, f_{k-1}}
\end{aligned}
$$

Proof. Just like the proof of Lemma 9, we decompose the matrix $\left(\varepsilon_{f_{k+1}-1+i+j}\right)_{0 \leq i, j<f_{k}}$ into three parts:

$$
\left(\varepsilon_{f_{k+1}-1+i+j}\right)_{0 \leq i, j<f_{k}}=\left(\begin{array}{c}
A \\
A^{\prime} \\
B
\end{array}\right)
$$

where

$$
\begin{aligned}
& A=\left(\varepsilon_{f_{k+1}-1+i+j}\right)_{0 \leq i<f_{k-2}, 0 \leq j<f_{k}} \\
& A^{\prime}=\left(\varepsilon_{f_{k+1}-1+f_{k-2}+i+j}\right)_{0 \leq i<f_{k-3}, 0 \leq j<f_{k}} \\
& B=\left(\varepsilon_{f_{k+1}-1+f_{k-1}+i+j}\right)_{0 \leq i<f_{k-2}, 0 \leq j<f_{k}} .
\end{aligned}
$$

By Lemma 5, the following two subwords of ε :

$$
\begin{aligned}
& \varepsilon_{f_{k+1}-1} \varepsilon_{f_{k+1}} \cdots \varepsilon_{f_{k+1}+f_{k-2}+f_{k}-3} \text { and } \\
& \varepsilon_{f_{k+1}-1+f_{k-1}} \varepsilon_{f_{k+1}+f_{k-1}} \cdots \varepsilon_{f_{k+1}+f_{k-1}+f_{k-2}+f_{k}-3}
\end{aligned}
$$

differ only at two places. Namely, $\varepsilon_{f_{k+1}+f_{k}-2} \neq \varepsilon_{f_{k+1}+f_{k-1}+f_{k}-2}$ and $\varepsilon_{f_{k+1}+f_{k}-1} \neq$ $\varepsilon_{f_{k+1}+f_{k-1}+f_{k}-1}$. Therefore, we get

$$
B-A=\left(\begin{array}{cccc}
& & & (-1)^{k} \\
0 & & (-1)^{k-1} \\
& & \ldots & \\
& (-1)^{k} & \ldots & (-1)^{k-1}
\end{array}\right)
$$

Thus, we have

$$
\begin{align*}
& \operatorname{det}\left(\varepsilon_{f_{k+1}-1+i+j}\right)_{0 \leq i, j<f_{k}} \\
& =\operatorname{det}\left(\begin{array}{cccccccc}
A_{0} & A_{1} & \cdots & A_{f_{k-1}-1} & A_{f_{k-1}} & \cdots & A_{f_{k}-2} & A_{f_{k}-1} \\
& & & & & & (-1)^{k} & (-1)^{k-1} \\
& 0 & & & \cdots & \cdots & \\
& & & & (-1)^{k} & (-1)^{k-1} & & 0
\end{array}\right) \\
& =(-1)^{k f_{k-2}}(-1)^{\left[\frac{f_{k-2}}{2}\right]} \operatorname{det}\left(A_{0} A_{1} \cdots A_{f_{k-1}-1}\right) \\
& =\chi(k: 1,3,4,5) H_{f_{k+1}-1, f_{k-1}}, \tag{18}
\end{align*}
$$

which completes the proof for $H_{f_{k+1}-1, f_{k-1}}$.
Lemma 11 For any $k \geq 2$, we have

$$
\begin{aligned}
H_{f_{k+1}-1, f_{k-1}} & =\chi(k: 2,5) H_{0, f_{k-1}} \\
\bar{H}_{f_{k+1}-1, f_{k-1}} & =\chi(k: 2,5) \bar{H}_{0, f_{k-1}}
\end{aligned}
$$

Proof. Since by Lemma 5,

$$
\begin{aligned}
& \varepsilon_{f_{k+1}-1} \varepsilon_{f_{k+1}} \cdots \varepsilon_{f_{k+1}+f_{k-1}-2} \\
= & \varepsilon_{f_{k+1}+f_{k-1}-1} \varepsilon_{f_{k+1}+f_{k-1}} \cdots \varepsilon_{f_{k+1}+2 f_{k-1}-2}
\end{aligned}
$$

we get

$$
\left(\varepsilon_{f_{k+1}-1+i+j}\right)_{0 \leq i, j<f_{k-1}}=\left(\begin{array}{ccccc}
0 & & & 0 & 1 \\
1 & \cdot & & & 0 \\
& \cdot & . & & \\
0 & & \cdot & \cdot & \\
0 & & & 1 & 0
\end{array}\right)\left(\varepsilon_{f_{k+1}+i+j}\right)_{0 \leq i, j<f_{k-1}}
$$

Also, by Lemma 5 ,

$$
\left(\varepsilon_{f_{k+1}+i+j}\right)_{0 \leq i, j<f_{k}}=\left(\varepsilon_{i+j}\right)_{0 \leq i, j<f_{k}} .
$$

Thus we obtain

$$
\begin{aligned}
H_{f_{k+1}-1, f_{k-1}} & =\operatorname{det}\left(\varepsilon_{f_{k+1}-1+i+j}\right)_{0 \leq i, j<f_{k-1}} \\
& =(-1)^{f_{k-1}-1} \operatorname{det}\left(\varepsilon_{f_{k+1}+i+j}\right)_{0 \leq i, j<f_{k-1}} \\
& =\chi(k: 2,5) H_{0, f_{k-1}}
\end{aligned}
$$

which completes the proof.
Lemma 12 For any $k \geq 3$, we have

$$
\begin{aligned}
H_{0, f_{k}} & =\chi(k: 2,3) H_{0, f_{k-1}}+\chi(k: 2,4) H_{0, f_{k-2}} \\
\bar{H}_{0, f_{k}} & =\chi(k: 1,3,4,5) \bar{H}_{0, f_{k-1}}+\chi(k: 0,1,2,3) \bar{H}_{0, f_{k-2}}
\end{aligned}
$$

Proof. Clear from Lemmas 9-11.
Lemma 13 For any $k \geq 0$, we have

$$
\begin{aligned}
H_{0, f_{k}} & =\chi(k: 2) f_{k-1} \\
\bar{H}_{0, f_{k}} & =\chi(k: 1,2,4) f_{k-2}
\end{aligned}
$$

Proof. It holds that

$$
\begin{array}{ccc}
H_{0, f_{0}}=1, & H_{0, f_{1}}=1, & H_{0, f_{2}}=-2 \\
\bar{H}_{0, f_{0}}=0, & \bar{H}_{0, f_{1}}=-1, & \bar{H}_{0, f_{2}}=-1 .
\end{array}
$$

Thus, the lemma holds for $k=0,1,2$. For ≥ 3, we can prove it by induction on k using Lemma 12.

Lemma 14 For any $k \geq 1$, we have

$$
\begin{aligned}
H_{0, f_{k}-1} & =\chi(k: 0,4) f_{k-2} \\
\bar{H}_{0, f_{k}-1} & =\chi(k: 2,3,4,5) f_{k-3}
\end{aligned}
$$

Proof. Since the matrix $\left(\varepsilon_{i+j}\right)_{0 \leq i, j<f_{k}-1}$ is obtained from the matrix $\left(\varepsilon_{i+j}\right)_{0 \leq i, j<f_{k}}$ by removing the last row and the last column, for any $k \geq 2$ we have by (17),

$$
\begin{align*}
& H_{0, f_{k}-1} \\
& =\operatorname{det}\left(\begin{array}{cccccccc}
A_{0} & A_{1} & \cdots & A_{f_{k-1}-1} & 0 & \cdots & 0 & 0 \\
& & & & & & & (-1)^{k} \\
& 0 & & & & & & \\
& & & & & \cdots & (-1)^{k-1} \\
& & & & (-1)^{k} & (-1)^{k-1} & & \\
& & & & & & &
\end{array}\right) \\
& =(-1)^{k\left(f_{k-2}-1\right)}(-1)^{\left[\frac{f_{k-2}-1}{2}\right]} \operatorname{det}\left(A_{0} A_{1} \cdots A_{f_{k-1}-1}\right) \\
& =(-1)^{k\left(f_{k-2}-1\right)}(-1)^{\left[\frac{f_{k-2}-1}{2}\right]} H_{0, f_{k-1}} . \tag{19}
\end{align*}
$$

Hence, in view of Lemma 13, we obtain the formula for $H_{0, f_{k}-1}$.
Theorem 2 For any $m, k \geq 1$ with $f_{k-1}<m \leq f_{k}$ and $n \in \mathbf{N}$ with $n \equiv{ }_{k+1} 0$, we have

$$
\begin{aligned}
& H_{n, m}= \begin{cases}\chi(k: 2) f_{k-1} & \left(\text { if } m=f_{k}\right) \\
\chi(k: 0,4) f_{k-2} & \text { (if } \left.m=f_{k}-1\right) \\
0 & \text { (otherwise) }\end{cases} \\
& \bar{H}_{n, m}= \begin{cases}\chi(k: 1,2,4) f_{k-2} & \text { (if } \left.m=f_{k}\right) \\
\chi(k: 2,3,4,5) f_{k-3} & \text { (if } \left.m=f_{k}-1\right) \\
0 & \text { (otherwise). }\end{cases}
\end{aligned}
$$

Proof. By Lemma 3 and 7, the matrix for $H_{n, m}$ coincides with that for $H_{0, m}$ so that $H_{n, m}=H_{0, m}$. Then, the first two cases follow from Lemma 13
and 14. For the last case, by Corollary 1 , there exist two identical rows in the matrix $\left(\varepsilon_{i+j}\right)_{0 \leq i, j<m}$, so that $H_{0, m}=0$.

Theorem 3 For any $k, n, i \in \mathbf{N}$ with $n \equiv_{k+1} i$ and $0 \leq i \leq f_{k+1}-1$, we have

$$
\begin{aligned}
& H_{n, f_{k}}=\left\{\begin{array}{c}
\chi(k: 2) \chi(k: 1,4)^{i} f_{k-1} \\
\binom{\text { if either } \tau_{k+1}(n)=0 \text { and } 0 \leq i<f_{k-1}}{\text { or } \tau_{k+1}(n)=1 \text { and } 0 \leq i<f_{k}} \\
\chi(k: 1,2,4) f_{k-2} \\
\binom{\text { if either } \tau_{k+1}(n)=0 \text { and } i=f_{k-1}}{\text { or } i=f_{k+1}-1}
\end{array}\right. \\
& \bar{H}_{n, f_{k}}=\left\{\begin{array}{c}
\chi(k: 1,2,4) \chi(k: 1,4)^{i} f_{k-2} \\
\binom{\text { if either } \tau_{k+1}(n)=0 \text { and } 0 \leq i<f_{k-1}}{\text { or } \tau_{k+1}(n)=1 \text { and } 0 \leq i<f_{k}} \\
\chi(k: 2) f_{k-3}\binom{\text { if either } \tau_{k+1}(n)=0 \text { and } i=f_{k-1}}{\text { or } i=f_{k+1}-1} \\
0 \quad \text { (otherwise). }
\end{array}\right.
\end{aligned}
$$

Proof. The theorem holds for $k=0$. Let $k \geq 1$.
Assume that either $\tau_{k+1}(n)=0$ and $0 \leq i<f_{k-1}$ or $\tau_{k+1}(n)=1$ and $0 \leq i<f_{k}$. Then we have by Lemma 3 and 7

$$
\begin{aligned}
\varepsilon_{i+j}=\varepsilon_{n+j} & \left(j=0,1, \cdots, f_{k}-i-1\right) \\
\varepsilon_{i+j-f_{k}}=\varepsilon_{n+j} & \left(j=f_{k}-i, f_{k}, \cdots, 2 f_{k}-2\right) \\
\varepsilon_{j}=\varepsilon_{j+f_{k}} & \left(j=0,1, \cdots, f_{k}-1\right) .
\end{aligned}
$$

Hence, the columns of the matrix $\left(\varepsilon_{n+h+j}\right)_{0 \leq h, j \leq f_{k}}$ coincide with those of the matrix $\left(\varepsilon_{h+j}\right)_{0 \leq h, j \leq f_{k}}$. The j-th column of the former is the $(i+j)\left(\bmod f_{k}\right)$ th column of the latter for $j=0, \cdots, f_{k}-1$. Therefore, we get $H_{n, f_{k}}=$ $(-1)^{i\left(f_{k}-i\right)} H_{0, f_{k}}$, which leads to the first case of our theorem by Theorem 2.

Assume that $i=f_{k+1}-1$. Then we have $H_{n, f_{k}}=H_{f_{k+1}-1, f_{k}}$ by Lemmas 3 and 7. Thus, by Lemmas $10-12$ we get

$$
H_{n, f_{k}}=\chi(k: 1,2,4) f_{k-2} .
$$

Assume that $\tau_{k+1}(n)=0$ and $i=f_{k-1}$. Then, since $n \equiv_{k+2} i$, we have $H_{n, f_{k}}=H_{f_{k-1}, f_{k}}$ by Lemmas 3 and 7 . By Lemma 1,

$$
\begin{aligned}
\xi & :=\varepsilon_{f_{k-1}} \varepsilon_{f_{k-1}+1} \cdots \varepsilon_{f_{k-1}+2 f_{k}-2} \prec_{1} W_{k-2} W_{k-1} W_{k} W_{k-1} W_{k-2}, \\
\eta & :=\varepsilon_{f_{k+1}-1} \varepsilon_{f_{k+1}} \cdots \varepsilon_{f_{k+1}+2 f_{k}-3} \prec \prec_{k} W_{k-2} W_{k-1} W_{k} W_{k-1} W_{k-2}
\end{aligned}
$$

holds. Since the last letter of η comes one letter before the last letter of the palindrome word $W_{k-2} W_{k-1} W_{k} W_{k-1} W_{k-2}$. Hence, ξ is the mirror image of η, so that

$$
\begin{aligned}
& \left(\varepsilon_{f_{k-1}+i+j}\right)_{0 \leq i, j<f_{k}}=
\end{aligned}
$$

Thus, we obtain $H_{f_{k-1}, f_{k}}=H_{f_{k+1}-1, f_{k}}$ and

$$
H_{n, f_{k}}=\chi(k: 1,2,4) f_{k-2} .
$$

Assume that n does not belong to the above two cases. Then, since $\tau_{k+1}(n)=1$ implies $i<f_{k}$, we have the following condition:

$$
\tau_{k+1}(n)=0 \text { and } f_{k-1}+1 \leq i \leq f_{k+1}-2 .
$$

This condition is nonempty only if $k \geq 2$, which we assume. Then, the condition (2) of Theorem 1 is satisfied with $f_{k}\left(\right.$ resp. $\left.i-f_{k}\right)$ in place of m (resp. i). Thus, by Corollary $3, H_{n, f_{k}}=0$.

Lemma 15 For any $k, n, i \in \mathbf{N}$ with $k \geq 1$ and $n \equiv_{k+1} i$, assume that either $\tau_{k+1}(n)=0$ and $0 \leq i<f_{k-1}$ or $\tau_{k+1}(n)=1$ and $0 \leq i<f_{k}$. Then we have

$$
\begin{aligned}
& H_{n, f_{k}-1}= \begin{cases}\chi(k: 0,4) f_{k-2} & (i=0) \\
\chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1} \\
+\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-2} & \left(0<i \leq f_{k-2}\right) \\
\chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1} & \left(f_{k-2}<i \leq f_{k-1}\right) \\
\chi(k: 0,4) \chi(k: 1,4)^{i} f_{k-2} & \left(f_{k-1}<i<f_{k}\right)\end{cases} \\
& \bar{H}_{n, f_{k}-1}= \begin{cases}\chi(k: 2,3,4,5) f_{k-3} & (i=0) \\
\chi(k: 1,3,4,5) \chi(k: 1,2,4,5)^{i} \bar{H}_{i+f_{k}, f_{k-1}-1} & \left(0<i \leq f_{k-2}\right) \\
+\chi(k: 0,1) \chi(k: 1,4)^{i} f_{k-3} & \left(f_{k-2}<i \leq f_{k-1}\right) \\
\chi(k: 1,3,4,5) \chi(k: 1,2,4,5)^{i} \bar{H}_{i+f_{k}, f_{k-1}-1} \\
\chi(k: 2,3,4,5) \chi(k: 1,4)^{i} f_{k-3} & \left(f_{k-1}<i<f_{k}\right) .\end{cases}
\end{aligned}
$$

Proof. If $i=0$, then the statement follows from Theorem 2. Let

$$
\begin{align*}
A_{j}= & { }^{t}\left(\varepsilon_{j}, \varepsilon_{j+1}, \cdots, \varepsilon_{j+f_{k-1}-1}\right) \\
A_{j}^{\prime}= & { }^{t}\left(\varepsilon_{j}, \varepsilon_{j+1}, \cdots, \varepsilon_{j+f_{k-1}-2}\right) \tag{20}\\
B_{j}^{\prime}= & { }^{t}\left(\varepsilon_{j+f_{k-1}}, \varepsilon_{j+f_{k-1}+1} \cdots, \varepsilon_{j+f_{k}-1}\right) \\
& (j=0,1,2, \cdots) .
\end{align*}
$$

Then, by the same argument as in the proof of Theorem 3, we obtain

$$
\begin{aligned}
H_{n, f_{k}-1} & =\operatorname{det}\binom{A_{i} \cdots A_{f_{k}-1} A_{0} \cdots A_{i-2}}{B_{i}^{\prime} \cdots B_{f_{k}-1}^{\prime} B_{0}^{\prime} \cdots B_{i-2}^{\prime}} \\
& =(-1)^{(i-1)\left(f_{k}-i\right)} \operatorname{det}\binom{A_{0} \cdots A_{i-2} A_{i} \cdots A_{f_{k}-1}}{B_{0}^{\prime} \cdots B_{i-2}^{\prime} B_{i}^{\prime} \cdots B_{f_{k}-1}^{\prime}}
\end{aligned}
$$

Therefore, if $f_{k-2}<i \leq f_{k-1}$, then by the same argument to get (17), we obtain

$$
(-1)^{(i-1)\left(f_{k}-i\right)} H_{n, f_{k}-1}=
$$

$$
\operatorname{det}\left(\begin{array}{ccccc}
A_{0} \cdots A_{i-2} A_{i} \cdots A_{f_{k-1}-1} & 0 & \cdots & 0 & A_{f_{k}-1} \\
& & & (-1)^{k} & (-1)^{k-1} \\
0 & & & (-1)^{k-1} & \\
& (-1)^{k} & (-1)^{k-1} & & 0
\end{array}\right) .
$$

Since by Lemma 5

$$
A_{f_{k}-1}-A_{f_{k-2}-1}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
(-1)^{k}
\end{array}\right)
$$

we get

$$
\begin{aligned}
& (-1)^{(i-1)\left(f_{k}-i\right)} H_{n, f_{k}-1}=
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{k f_{k-2}}(-1)^{\left[\frac{f_{k-2}}{2}\right]} \operatorname{det}\left(A_{0}^{\prime} \cdots A_{i-2}^{\prime} A_{i}^{\prime} \cdots A_{f_{k-1}-1}^{\prime}\right) \\
& =\chi(k: 1,3,4,5)(-1)^{(i-1)\left(f_{k-1}-i\right)} H_{i+f_{k}, f_{k-1}-1} .
\end{aligned}
$$

Thus we obtain

$$
H_{n, f_{k}-1}=\chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1} .
$$

Assume that $f_{k-1}<i<f_{k}$. Then as above we have

$$
(-1)^{(i-1)\left(f_{k}-i\right)} H_{n, f_{k}-1}=
$$

$$
\begin{aligned}
& =(-1)^{k\left(i-f_{k-1}-1\right)+(k-1)\left(f_{k}-i\right)+\left[\frac{f_{k-2}-1}{2}\right]} \operatorname{det}\left(A_{0} \cdots A_{f_{k-1}-1}\right) \text {. }
\end{aligned}
$$

Hence, by Lemma 13

$$
\begin{aligned}
H_{n, f_{k}-1} & =\chi(k: 0,3,4) \chi(k: 1,4)^{i} H_{0, f_{k-1}} \\
& =\chi(k: 0,4) \chi(k: 1,4)^{i} f_{k-2} .
\end{aligned}
$$

Assume that $0<i<f_{k-2}$. Then, since $A_{i-1+f_{k-1}}=A_{i-1}$, by the same arguments as above we get

$$
\begin{aligned}
& (-1)^{(i-1)\left(f_{k}-i\right)} H_{n, f_{k}-1}=
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{k f_{k-2}}(-1)^{\left[\frac{f_{k-2}}{2}\right]} \operatorname{det}\left(A_{0}^{\prime} \cdots A_{i-2}^{\prime} A_{i}^{\prime} \cdots A_{f_{k-1}-1}^{\prime}\right) \\
& +(-1)^{k(i-1)+(k-1)\left(f_{k-2}-i\right)}(-1)^{i-1+\left[\frac{f_{k-2}-1}{2}\right]} \\
& \left.\operatorname{det}\left(A_{0} \cdots A_{i-2} A_{i} \cdots A_{f_{k-1}-1} A_{i-1}\right)\right) .
\end{aligned}
$$

Since

$$
\left.\operatorname{det}\left(A_{0} \cdots A_{i-2} A_{i} \cdots A_{f_{k-1}-1} A_{i-1}\right)\right)=(-1)^{f_{k-1}-i} H_{0, f_{k-1}}
$$

we obtain by Lemma 13

$$
\begin{align*}
H_{n, f_{k}-1}= & \chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1} \\
& +\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-2} \tag{21}
\end{align*}
$$

Note that (21) holds also for $i=f_{k-2}$ since in this case,

$$
\begin{aligned}
H_{n, f_{k}-1}= & (-1)^{k\left(f_{k-2}-1\right)}(-1)^{f_{k-2}-1+\left[\frac{f_{k-2}-1}{2}\right]} \\
& \operatorname{det}\left(A_{0} \cdots A_{f_{k-2}-2} A_{f_{k-2}} \cdots A_{f_{k-1}-2} A_{f_{k}-1}\right)
\end{aligned}
$$

and

$$
A_{f_{k}-1}=A_{f_{k-1}-1}+{ }^{t}\left(0, \cdots, 0,(-1)^{k}\right)
$$

which completes the proof for $H_{n, f_{k}-1}$.
Lemma 16 For any $k, n, i \in \mathbf{N}$ with $k \geq 1$ and $n \equiv_{k+1} i$, assume that either $\tau_{k+1}(n)=0$ and $0 \leq i<f_{k-1}$ or $\tau_{k+1}(n)=1$ and $0 \leq i<f_{k}$. Then we have

$$
\begin{aligned}
& H_{n, f_{k}-1}= \begin{cases}\chi(k: 0,4) f_{k-2} & (i=0) \\
\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-3} & \left(0<i \leq f_{k-1}\right) \\
\chi(k: 0,4) \chi(k: 1,4)^{i} f_{k-2} & \left(f_{k-1}<i<f_{k}\right)\end{cases} \\
& \bar{H}_{n, f_{k}-1}= \begin{cases}\chi(k: 2,3,4,5) f_{k-3} & (i=0) \\
\chi(k: 0,1) \chi(k: 1,4)^{i} f_{k-4} & \left(0<i \leq f_{k-1}\right) \\
\chi(k: 2,3,4,5) \chi(k: 1,4)^{i} f_{k-3} & \left(f_{k-1}<i<f_{k}\right) .\end{cases}
\end{aligned}
$$

Proof. The first and the third cases have been already proved in Lemma 15. Let us consider the second case where $0<i \leq f_{k-1}$. We divide it into two subcases, and use induction on k.

Case 1. $\quad i=1$:
If $k=1$, then

$$
H_{n, f_{k-1}}=H_{n, 1}=\varepsilon_{n}=0
$$

since $n \equiv_{2} 1$ and $\tau_{0}(n)=1$. On the other hand, $f_{k-3}=f_{-2}=0$, and hence, we get the statement. Assume that $k \geq 2$ and the assertion holds for $k-1$.

Then, by Lemma 15 and the induction hypothesis, we get

$$
\begin{aligned}
& H_{n, f_{k}-1} \\
= & \chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1}+\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-2} \\
= & \chi(k: 1,3,4,5) H_{1+f_{k}, f_{k-1}-1}+\chi(k: 2,3,4,5) f_{k-2} \\
= & \chi(k: 1,3,4,5) \chi(k-1: 2,3,4,5) f_{k-4}+\chi(k: 2,3,4,5) f_{k-2} \\
= & \chi(k: 0,1) f_{k-4}+\chi(k: 2,3,4,5) f_{k-2} \\
= & \chi(k: 2,3,4,5) f_{k-3},
\end{aligned}
$$

which is the desired statement.
Case 2. $\quad i \geq 2$:
If $f_{k-2}<i \leq f_{k-1}$, then it follows from the third case and then the fourth case of Lemma 15 that

$$
\begin{aligned}
& H_{n, f_{k}-1} \\
= & \chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1} \\
= & \chi(k: 2,3) \chi(k: 1,2,4,5)^{i} \chi(k-1: 0,4) \chi(k-1: 1,4)^{i} f_{k-3} \\
= & \chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-3} .
\end{aligned}
$$

Assume that $i \leq f_{k-2}$ and the statement holds for $k-1$. Then by Lemma 15, we get

$$
\begin{aligned}
& H_{n, f_{k}-1} \\
= & \chi(k: 2,3) \chi(k: 1,2,4,5)^{i} H_{i+f_{k}, f_{k-1}-1}+\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-2} \\
= & \chi(k: 2,3) \chi(k: 1,2,4,5)^{i} \chi(k-1: 1,2,3,5) \chi(k-1: 1,4)^{i} f_{k-4} \\
& +\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-2} \\
= & \chi(k: 0,4) \chi(k: 1,4)^{i} f_{k-4}+\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-2} \\
= & \chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-3} .
\end{aligned}
$$

This completes the proof for $H_{n, f_{k}-1}$.

Lemma 17 For any $k, n \in \mathbf{N}$ with $k \geq 2$ and $\tau_{k+1}(n)=0$, we have

$$
H_{n, f_{k}-1}= \begin{cases}\chi(k: 2,3,4,5) f_{k-3} & \left(n \equiv_{k+1} f_{k-1}\right) \\ \chi(k: 0,4) f_{k-2} & \left(n \equiv_{k+1} f_{k-1}+1\right)\end{cases}
$$

$$
\bar{H}_{n, f_{k}-1}= \begin{cases}\chi(k: 0,4) f_{k-4} & \left(n \equiv_{k+1} f_{k-1}\right) \\ \chi(k: 2,3,4,5) f_{k-3} & \left(n \equiv_{k+1} f_{k-1}+1\right) .\end{cases}
$$

Proof. Assume that $n \equiv_{k+1} f_{k-1}$. Then since $\tau_{k+1}(n)=0$, we have $n \equiv_{k+2} f_{k-1}$. Therefore, by Lemma 3 and 7 , we get

$$
H_{n, f_{k}-1}=\operatorname{det}\binom{A_{f_{k-1}} \cdots A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k+1}-2}}{B_{f_{k-1}}^{\prime} \cdots B_{f_{k}-1}^{\prime} B_{f_{k}}^{\prime} \cdots B_{f_{k+1}-2}^{\prime}}
$$

where we use the notation (20). By Lemma 5, the following two subwords of ε :

$$
\varepsilon_{n} \varepsilon_{n+1} \cdots \varepsilon_{n+f_{k-2}+f_{k}-3} \text { and } \varepsilon_{n+f_{k-1}} \varepsilon_{n+f_{k-1}+1} \cdots \varepsilon_{n+f_{k-1}+f_{k-2}+f_{k}-3}
$$

differ only at two places, namely, at the $\left(f_{k}-2-f_{k-1}\right)$-th and the $\left(f_{k}-1-\right.$ f_{k-1})-th places. Hence, we have

$$
\begin{aligned}
& H_{n, f_{k}-1}=\operatorname{det}\binom{A_{f_{k-1}} \cdots A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k+1}-2}}{B_{f_{k-1}}^{\prime} \cdots B_{f_{k}-1}^{\prime} B_{f_{k}}^{\prime} \cdots B_{f_{k+1}-2}^{\prime}}= \\
& \operatorname{det}\left(\begin{array}{ccccc}
A_{f_{k-1}} & \cdots & \cdots & A_{f_{k}-1} & A_{f_{k}} \cdots \\
& & \begin{array}{c}
(-1)^{k} \\
(-1)^{k-1}
\end{array} & (-1)^{k-1}
\end{array}\right) \quad \text {. }
\end{aligned}
$$

By adding the first $f_{k-2}-1$ columns and subtracting the last $f_{k-2}-1$ columns to and from the column beginning by $A_{f_{k}-1}$, we get the column

$$
{ }^{t}\left(A_{f_{k}-1} 0 \cdots 0\right)+{ }^{t}\left((-1)^{k-1} 0 \cdots 0(-1)^{k} 0 \cdots 0\right),
$$

where $(-1)^{k}$ is at the $\left(f_{k-2}-1\right)$-th place. Since, by Lemma 5

$$
\left(A_{f_{k-1}} \cdots A_{f_{k}-2}\right)-\left(A_{2 f_{k-1}} \cdots A_{f_{k+1}-2}\right)=
$$

$$
\left(\begin{array}{lllll}
& & & (-1)^{k-1} \\
& 0 & & (-1)^{k-1} & (-1)^{k} \\
& \cdots & \cdots & \cdots & \\
& \cdots & & \\
(-1)^{k-1} & (-1)^{k} & & & 0 \\
(-1)^{k} & & & & \\
& & 0 & &
\end{array}\right)
$$

hence, we get

$$
\begin{align*}
& H_{n, f_{k}-1} \\
= & (-1)^{k\left(f_{k-2}-1\right)}(-1)^{f_{k-1}\left(f_{k-2}-1\right)+\left[\frac{f_{k-2}-1}{2}\right]} \\
& \left\{\operatorname{det}\left(A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k+1}-2}\right)+(-1)^{k-1} \operatorname{det}\left(A_{f_{k}}^{\prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime}\right)\right. \\
& \left.\quad+(-1)^{k+f_{k-2}-1} \operatorname{det}\left(A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime \prime}\right)\right\}, \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
A_{j}^{\prime \prime} & :={ }^{t}\left(\varepsilon_{j+1} \cdots \varepsilon_{j+f_{k-1}-1}\right) \\
A_{j}^{\prime \prime \prime} & ={ }^{t}\left(\varepsilon_{j} \cdots \varepsilon_{j+f_{k-2}-2} \varepsilon_{j+f_{k-2}} \cdots \varepsilon_{j+f_{k-1}-1}\right)
\end{aligned}
$$

Here, we have

$$
\begin{align*}
\operatorname{det}\left(A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k+1}-2}\right) & =H_{f_{k}-1, f_{k-1}} \\
\operatorname{det}\left(A_{f_{k}}^{\prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime}\right) & =H_{f_{k}+1, f_{k-1}-1} \tag{23}
\end{align*}
$$

and by Lemma 5

$$
\operatorname{det}\left(A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime \prime}\right)=
$$

$$
\begin{aligned}
& \left(\begin{array}{lllll}
& 0 & & \\
& & & & \\
& & & (-1)^{k-1} \\
A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k}+f_{k-2}-1}^{\prime \prime \prime} & & \cdots & \cdots & \\
& & \cdots & \cdots & \\
& & & \\
& (-1)^{k-1} & \cdots & & \\
& (-1)^{k} & & & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
C_{f_{k}} & & & \\
\vdots & 0 & & \\
C_{f_{k}+f_{k-2}-2} & & & \\
C_{f_{k}+f_{k-2}} & & & (-1)^{k-1} \\
\vdots & & \cdots & \cdots \\
& & \cdots & \cdots \\
& (-1)^{k-1} & \cdots & \\
C_{f_{k+1}-1} & (-1)^{k-1} & & (-1)^{k} \\
& & &
\end{array}\right.
\end{aligned}
$$

where we put

$$
C_{j}=\left(\varepsilon_{j} \varepsilon_{j+1} \cdots \varepsilon_{j+f_{k-2}-1}\right)
$$

Since $C_{f_{k}+f_{k-2}+j}=C_{f_{k}+j}\left(j=0,1, \cdots, f_{k-3}-2\right)$ by Lemma 5 , it holds that

$$
\begin{aligned}
& \operatorname{det}\left(A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime \prime}\right) \\
= & (-1)^{(k-1)\left(f_{k-3}-1\right)+f_{k-3}-1+\left[\frac{f_{k-3}-1}{2}\right]} \operatorname{det}\left(\begin{array}{c}
C_{f_{k}} \\
\vdots \\
C_{f_{k}+f_{k-2}-2} \\
C_{f_{k+1}-1}
\end{array}\right) .
\end{aligned}
$$

Moreover it follows from Lemma 5 that

$$
\operatorname{det}\left(\begin{array}{c}
C_{f_{k}} \\
\vdots \\
C_{f_{k}+f_{k-2}-2} \\
C_{f_{k+1}-1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{c}
C_{f_{k+1}} \\
\vdots \\
C_{f_{k+1}+f_{k-2}-2} \\
C_{f_{k+1}-1}
\end{array}\right)=(-1)^{f_{k-2}-1} H_{f_{k+1}-1, f_{k-2}},
$$

which implies

$$
\operatorname{det}\left(A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime \prime}\right)=\chi(k: 0,3,5) H_{f_{k+1}-1, f_{k-2}}
$$

Thus by (22), (23), Theorem 3 and Lemma 16, we obtain

$$
\begin{aligned}
& H_{n, f_{k}-1} \\
= & \chi(k: 4) H_{f_{k}-1, f_{k-1}}+\chi(k: 0,2) H_{f_{k}+1, f_{k-1}-1}+\chi(k: 1,3,4) H_{f_{k+1}-1, f_{k-2}} \\
= & \chi(k: 2,3,4,5) f_{k-3}+\chi(k: 2,3,4,5) f_{k-4}+\chi(k: 0,1) f_{k-4} \\
= & \chi(k: 2,3,4,5) f_{k-3},
\end{aligned}
$$

which is the first case of our lemma.
To prove the second case, assume that $n \equiv_{k+1} f_{k-1}+1$. Then, as above we get

$$
\begin{aligned}
& H_{n, f_{k}-1}=\operatorname{det}\binom{A_{f_{k-1}+1} \cdots A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k+1}-1}}{B_{f_{k-1}+1}^{\prime} \cdots B_{f_{k}-1}^{\prime} B_{f_{k}}^{\prime} \cdots B_{f_{k+1}-1}^{\prime}}= \\
& \operatorname{det}\left(\begin{array}{ccccc}
A_{f_{k-1}+1} & \cdots & \cdots & A_{f_{k}-1} & A_{f_{k}} \cdots
\end{array} A_{f_{k+1}-1}\right) \\
& =(-1)^{(k-1)\left(f_{k-2}-1\right)}(-1)^{\left(f_{k-2}-1\right) f_{k-1}+\left[\frac{f_{k-2}-1}{2}\right]} \operatorname{det}\left(A_{f_{k}} \cdots A_{f_{k+1}-1}\right) \text {. }
\end{aligned}
$$

Therefore, we get by Theorem 3

$$
\begin{aligned}
H_{n, f_{k}-1} & =\chi(k: 0,3,4) \chi(k-1: 2) f_{k-2} \\
& =\chi(k: 0,4) f_{k-2},
\end{aligned}
$$

which completes the proof for $H_{n, f_{k}-1}$.

Theorem 4 For any $k, n, i \in \mathbf{N}$ with $k \geq 1, n \equiv_{k+1} i$ and $0 \leq i<f_{k+1}$, we have

$$
\begin{aligned}
& H_{n, f_{k}-1}= \begin{cases}\chi(k: 0,4) f_{k-2} & (i=0) \\
\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-3} & \left(0<i \leq f_{k-1}\right) \\
\chi(k: 0,4) \chi(k: 1,4)^{i} f_{k-2} & \binom{f_{k-1}<i<f_{k}}{\text { and } \tau_{k+1}(n)=1} \\
\chi(k: 0,4) f_{k-2} & \binom{i=f_{k-1}+1}{\text { and } \tau_{k+1}(n)=0} \\
0 & (\text { otherwise })\end{cases} \\
& \bar{H}_{n, f_{k}-1}= \begin{cases}\chi(k: 2,3,4,5) f_{k-3} & (i=0) \\
\chi(k: 0,1) \chi(k: 1,4)^{i} f_{k-4} & \left(0<i \leq f_{k-1}\right) \\
\chi(k: 2,3,4,5) \chi(k: 1,4)^{i} f_{k-3} & \binom{f_{k-1}<i<f_{k}}{\text { and } \tau_{k+1}(n)=1} \\
\chi(k: 2,3,4,5) f_{k-3} & \binom{i=f_{k-1}+1}{\text { and } \tau_{k+1}(n)=0} \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

Proof. The first four cases follow from Lemma 16 and 17. Note that for $i=f_{k-1}$, the assertion in these lemmas coincide, so that $H_{n, f_{k}-1}$ is independent of $\tau_{k+1}(n)$. Let us consider the last case, where $\tau_{k+1}(n)=0$ and $f_{k-1}+2 \leq i \leq f_{k+1}-1$. We may assume that $k \geq 2$. Then, with $m=f_{k}-1$ and $i-f_{k}$ in place of i there, the condition (2) of Theorem 1 is satisfied. Therefore by Theorem $1, n \in \mathcal{R}_{m}$ which implies that $H_{n, f_{k}-1}=0$.

Lemma 18 For any $n, m \in \mathbf{N}$ such that $f_{k-2}+1 \leq m \leq f_{k}-2, i \leq n$ and $n-i \equiv_{k+1} 0$ for some $i, k \in \mathbf{Z}$ with $k \geq 2$ and $m+i=f_{k}$. Then, we have

$$
H_{n, m}=\chi(k: 2) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-3}
$$

$$
\bar{H}_{n, m}=\chi(k: 1,4) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-3} .
$$

Proof. At first, we consder the case $i<f_{k-2}$. By arguments similar to those used in the proof of Lemma 15, we get with the notation (20)

$$
\begin{aligned}
& H_{n, m}= \\
& \operatorname{det}\left(\begin{array}{lllllll}
A_{i} A_{i+1} & \cdots & A_{f_{k-1}+i-1} & 0 & \cdots & 0 & A_{f_{k}-1} \\
& & & & & (-1)^{k} & (-1)^{k-1} \\
& 0 & & & \cdots & \\
& & (-1)^{k} & (-1)^{k-1} & & & 0
\end{array}\right) .
\end{aligned}
$$

Therefore, by Theorem 3 and 4,

$$
\begin{aligned}
& H_{n . m} \\
= & (-1)^{k\left(f_{k-2}-i+1\right)+\left[\frac{f_{k-2}-i+1}{2}\right]} H_{i, f_{k-1}-1}+(-1)^{(k-1)\left(f_{k-2}-i\right)+\left[\frac{f_{k-2}-i}{2}\right]} H_{i, f_{k-1}} \\
= & \chi(k: 2) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]}\left(-f_{k-4}+f_{k-2}\right) \\
= & \chi(k: 2) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-3} .
\end{aligned}
$$

If $i=f_{k-2}$, then the lemma follows from Theorem 3 .
Finally, we consider the case $f_{k-2}<i<f_{k-1}$. Then, denoting

$$
\begin{equation*}
A_{j}^{r}={ }^{t}\left(\varepsilon_{j} \varepsilon_{j+1} \cdots \varepsilon_{i+r-1}\right) \tag{24}
\end{equation*}
$$

we obtain by Theorem 3

$$
\begin{aligned}
& H_{n, m}=\operatorname{det}\left(A_{i}^{f_{k}-i} A_{i+1}^{f_{k}-i} \cdots A_{f_{k}-1}^{f_{k}-i}\right)= \\
& \operatorname{det}\left(\begin{array}{llllllll}
A_{i}^{f_{k-2}} & A_{i+1}^{f_{k-2}} & \cdots & A_{f_{k-1}-2}^{f_{k-2}} & A_{f_{k-1}-1}^{f_{k-2}} & A_{f_{k-1}}^{f_{k-2}} & \cdots & A_{f_{k}-1}^{f_{k-2}} \\
& 0 & & (-1)^{k-1} & (-1)^{k} & & & \\
& & (-1)^{k} & & & & \\
& \cdots & \cdots & & 0 & \\
(-1)^{k-1} & (-1)^{k} & \cdots & \cdots & & & & \\
(-1)^{k} & & & & & &
\end{array}\right) \\
& =(-1)^{k\left(f_{k-1}-i\right)}(-1)^{\left(f_{k-1}-i\right) f_{k-2}+\left[\frac{f_{k-1}-i}{2}\right]} H_{f_{k-1}, f_{k-2}} \\
& =\chi(k: 2) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-3} \text {, }
\end{aligned}
$$

which completes the proof for $H_{n, m}$.
Lemma 19 For any $n, m \in \mathbf{N}$ such that $f_{k-1}+1 \leq m \leq f_{k}-2, i \leq n$, $n-i \equiv_{k} f_{k-1}$ for some $i, k \in \mathbf{Z}$ with $k \geq 2$ and $m+i=f_{k}$, we have

$$
\begin{aligned}
H_{n, m} & =\chi(k: 1,2,4) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-2} \\
\bar{H}_{n, m} & =\chi(k: 2) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-3} .
\end{aligned}
$$

Proof. By the same arguments and in the same notations as in the second part of the proof of Lemma 18, we obtain

$$
\begin{aligned}
& H_{n, m}=\operatorname{det}\left(A_{f_{k-1}+i}^{f_{k}-i} \cdots A_{f_{k}-1}^{f_{k}-i} A_{f_{k}}^{f_{k}-i} \cdots A_{f_{k+1}-1}^{f_{k}-i}\right)= \\
& \operatorname{det}\left(\begin{array}{lllllll}
A_{i}^{f_{k-1}} & A_{i+1}^{f_{k-1}} & \cdots & A_{f_{k-2}-2}^{f_{k-1}} & A_{f_{k-2}-1}^{f_{k-1}} & A_{f_{k}}^{f_{k-1}} & \cdots \\
& & & A_{f_{k+1}-1}^{f_{k-1}} \\
0 & & (-1)^{k} & (-1)^{k-1} & & & \\
& \cdots & \cdots & & & \\
& \cdots & \cdots & & 0 & \\
(-1)^{k-1} & (-1)^{k-1} & & & & & \\
(-1)^{k-1} & & & & & &
\end{array}\right) \\
& =(-1)^{(k-1)\left(f_{k-2}-i\right)}(-1)^{\left(f_{k-2}-i\right) f_{k-1}+\left[\frac{f_{k-2}-i}{2}\right]} H_{f_{k}, f_{k-1}} \\
& =\chi(k: 1,2,4) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-2},
\end{aligned}
$$

which completes the proof for $H_{n, m}$.
Lemma 20 For any $n, m \in \mathbf{N}$ such that $f_{k-1}+1 \leq m \leq f_{k}-2, i \leq n$ and $n-i \equiv_{k+1} 0$ for some $i, k \in \mathbf{Z}$ with $k \geq 2$ and $m+i=f_{k}-1$, we have

$$
\begin{aligned}
H_{n, m} & =\chi(k: 0,4) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-2} \\
\bar{H}_{n, m} & =\chi(k: 2,3,4,5) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-3} .
\end{aligned}
$$

Proof. The proof is similar to the first part of the proof of Lemma 18. With the notation in (20), we get

$$
H_{n, m}=
$$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccccl}
A_{i} A_{i+1} & \cdots & A_{f_{k-1}+i-1} & 0 & 0 & \cdots & 0 \\
& & & & & \cdots & \\
& 0 & & & \cdots & & \\
& & & (-1)^{k} & (-1)^{k-1} & & 0
\end{array}\right) \\
& =(-1)^{k\left(f_{k-2}-1-i\right)}(-1)^{\left[\frac{f_{k-2}-1-i}{2}\right]} \operatorname{det}\left(A_{i} A_{i+1} \cdots A_{f_{k-1}+i-1}\right) \text {. }
\end{aligned}
$$

Hence, by Theorem 3

$$
H_{n, m}=\chi(k: 0,4) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-2}
$$

which completes the proof for $H_{n, m}$..
Lemma 21 For any $n, m \in \mathbf{N}$ such that $f_{k-2}+1 \leq m \leq f_{k}-2, i \leq n$ and $n-i \equiv_{k} f_{k-1}$ for some $i, k \in \mathbf{Z}$ with $k \geq 2$ and $m+i=f_{k}-1$, we have

$$
\begin{aligned}
H_{n, m} & =\chi(k: 2,3,4,5) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-3} \\
\bar{H}_{n, m} & =\chi(k: 0,4) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-4} .
\end{aligned}
$$

Proof. Since $i=f_{k}-1-m$, we get $1 \leq i \leq f_{k-1}-2$.
If $i=f_{k-2}-1$, then $m=f_{k-1}$ and $n \equiv_{k} f_{k}-1$. Therefore, by Theorem 3 , we get

$$
H_{n, m}=\chi(k-1: 1,2,4) f_{k-3}
$$

which coincides with the required identity since

$$
\begin{gathered}
\chi(k: 0,1,2)^{f_{k-2}-1}=\chi(k:\{0,1,2\} \cap\{0,3\})=\chi(k: 0), \\
(-1)^{\left[\frac{f_{k-2}-1}{2}\right]}=\chi(k: 0,4) .
\end{gathered}
$$

If $i=f_{k-2}$, then $m=f_{k-1}-1$ and $n \equiv_{k} 0$. Therefore, by Theorem 4, we get

$$
H_{n, m}=\chi(k-1: 0,4) f_{k-3}
$$

which coincides with the required statement since

$$
\begin{gathered}
\chi(k: 0,1,2)^{f_{k-2}}= \\
\chi(k:\{0,1,2\} \cap\{1,2,4,5\})=\chi(k: 1,2), \\
(-1)^{\left[\frac{f_{k-2}}{2}\right]}=\chi(k: 3,4) .
\end{gathered}
$$

If $f_{k-2}+1 \leq i \leq f_{k-1}-2$, then $n-i^{\prime} \equiv_{k} 0$ with $i^{\prime}:=i-f_{k-2}$. Then, since $m+i^{\prime}=f_{k-1}-1$ and $f_{k-2}+1 \leq m \leq f_{k-1}-2$, applying Lemma 20 , we obtain

$$
\begin{aligned}
& H_{n, m}=\chi(k-1: 0,4) \chi(k-1: 3,4,5)^{i^{\prime}}(-1)^{\left[i^{\prime} / 2\right]} f_{k-3} \\
= & \chi(k: 1,5) \chi(k: 0,4,5)^{i} \chi(k:\{0,4,5\} \cap\{1,2.4 .5\})(-1)^{\left[i^{\prime} / 2\right]} f_{k-3} \\
= & \chi(k: 1,4) \chi(k: 0,4,5)^{i}(-1)^{[i / 2]}(-1){ }^{\left[\frac{f_{k-2}+1}{2}\right]}(-1)^{i f_{k-2}} f_{k-3} \\
= & \chi(k: 2,3,4,5) \chi(0,1,2)^{i}(-1)^{[i / 2]} f_{k-3} .
\end{aligned}
$$

Now, we consider the case $1 \leq i \leq f_{k-2}-2$. Then, with the notations in (24) and in (20), we get

$$
\begin{aligned}
& H_{n, m}=\operatorname{det}\left(A_{f_{k-1}+i}^{f_{k}-i} \cdots A_{f_{k}-1}^{f_{k}-i} A_{f_{k}}^{f_{k}-i} \cdots A_{f_{k+1}-2}^{f_{k}-i}\right)= \\
& \operatorname{det}\left(\begin{array}{cllllll}
A_{f_{k-1}+i} & A_{f_{k-1}+i+1} & \cdots & A_{f_{k}-2} & A_{f_{k}-1} & A_{f_{k}} & \cdots
\end{array} A_{f_{k+1}-2}\right)
\end{aligned}
$$

Therefore, by arguments similar to those used in the first part of the proof of Lemma 17, we get

$$
\begin{aligned}
H_{n, m}= & (-1)^{k\left(f_{k-2}-1-i\right)}(-1)^{f_{k-1}\left(f_{k-2}-1-i\right)+\left[\frac{f_{k-2}-1-i}{2}\right]} \\
& \left\{\operatorname{det}\left(A_{f_{k}-1} A_{f_{k}} \cdots A_{f_{k+1}-2}\right)+(-1)^{k-1} \operatorname{det}\left(A_{f_{k}}^{\prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime}\right)\right. \\
& \left.+(-1)^{k+f_{k-2}-1-i} \operatorname{det}\left(A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime \prime}\right)\right\}
\end{aligned}
$$

where we use the same notations as in the proof of Lemma 17 except for $A_{j}^{\prime \prime \prime \prime}$ s which are defined by

$$
A_{j}^{\prime \prime \prime}={ }^{t}\left(\varepsilon_{j} \cdots \varepsilon_{j+f_{k-2}-i-2} \varepsilon_{j+f_{k-2}-i} \cdots \varepsilon_{j+f_{k-1}-1}\right)
$$

Then, following the arguments there, we get

$$
\begin{aligned}
H_{n, m}= & \chi(k: 4) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]}\left\{H_{f_{k}-1, f_{k-1}}\right. \\
& \left.+(-1)^{k-1} H_{f_{k}+1, f_{k-1}-1}+(-1)^{k+f_{k-2}-1-i} E\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
E & :=\operatorname{det}\left(A_{f_{k}}^{\prime \prime \prime} \cdots A_{f_{k+1}-2}^{\prime \prime \prime}\right) \\
& =\operatorname{det}\left(A_{f_{k}}^{\prime} \cdots A_{f_{k}+f_{k-2}-i-2}^{\prime} A_{f_{k}+f_{k-2}-i}^{\prime} \cdots A_{f_{k+1}-1}^{\prime}\right) \\
& =\operatorname{det}\left(A_{f_{k+1}}^{\prime} \cdots A_{f_{k+1}+f_{k-2}-i-2}^{\prime} A_{f_{k}+f_{k-2}-i}^{\prime} \cdots A_{f_{k+1}-1}^{\prime}\right) \\
& =(-1)^{\left(f_{k-2}-i-1\right)\left(f_{k-3}+i\right)} \operatorname{det}\left(A_{f_{k}+f_{k-2}-i}^{\prime} \cdots A_{f_{k+1}+f_{k-2}-i-2}^{\prime}\right) \\
& =(-1)^{\left(f_{k-2}-i-1\right)\left(f_{k-3}+i\right)} H_{f_{k-2}-i, f_{k-1}-1},
\end{aligned}
$$

where we have used Lemma 5 . Therefore, by Theorem 3 and 4, we have

$$
\begin{aligned}
& H_{n, m}=\chi(k: 4) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]}\left\{\chi(k-1: 1,2,4) f_{k-3}\right. \\
& +(-1)^{k-1} \chi(k-1: 2,3,4,5) f_{k-4}+(-1)^{k+f_{k-2}-1-i}(-1)^{\left(f_{k-2}-i-1\right)\left(f_{k-3}+i\right)} \\
& \left.\chi(k-1: 1,2,3,5) \chi(k-1: 1,4)^{f_{k-2}-i} f_{k-4}\right\} \\
& =\chi(k: 2,3,4,5) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-3},
\end{aligned}
$$

which completes the proof for $H_{n, m}$.

4 Tiling for $H_{n, m}$ and $\bar{H}_{n . m}$

In this section, we collect the values of $H_{n, m}$ and $\bar{H}_{n . m}$ obtained in the last section and arrange them in the quarter plane $\Omega:=\{0,1,2, \cdots\} \times$ $\{1,2,3, \cdots\}$. We will tile Ω by the following tiles on which the values $H_{n, m}$ are written in. That is,

$$
\begin{aligned}
& U_{1}:= V_{1}:=\{(1,-1)\} \\
& U_{k}:=\left\{(i, j) \in \mathbf{Z}^{2} ; 0 \leq i+j \leq f_{k-1}-1, \quad-f_{k-1} \leq j \leq-1\right\} \\
& V_{k}:=\left\{(i, j) \in \mathbf{Z}^{2} ; 0 \leq i+j \leq f_{k-2}-1, \quad-f_{k-2} \leq j \leq-1\right\} \\
& \quad(k=2,3,4, \cdots)
\end{aligned}
$$

with the written-in values $u_{k}: U_{k} \rightarrow \mathbf{Z}, v_{k}: V_{k} \rightarrow \mathbf{Z}:$

\[

\]

$\bar{u}_{k}: U_{k} \rightarrow \mathbf{Z}$ and $\bar{v}_{k}: V_{k} \rightarrow \mathbf{Z}:$

$$
\left.\left.\begin{array}{rl}
& \bar{u}_{1}(1,-1):=1, \bar{v}_{1}(1,-1):=0
\end{array}\right] \begin{array}{ll}
\chi(k: 1,4) \chi(k: 0,1,2)^{i}(-1)^{[i / 2]} f_{k-4} & (i+j=0) \\
\chi(k: 4) \chi(k: 0,3)^{i} f_{k-4} & \left(j=-f_{k-1}\right) \\
\chi(k: 1,2,3,4) \chi(k: 0,1,5)^{i}(-1)^{[i / 2]} f_{k-4} & \left(i+j=f_{k-1}-1\right) \\
\chi(k: 0,1) \chi(k: 1,4)^{i} f_{k-4} & (j=-1) \\
0 & (\text { otherwise })
\end{array}\right\} \begin{array}{ll}
\chi(k: 2) \chi(k: 3,4,5)^{i}(-1)^{[i / 2]} f_{k-3} & (i+j=0) \\
\bar{u}_{k}(i, j):= & \left(j=-f_{k-2}\right) \\
\chi(k: 3) \chi(k: 2,5)^{i} f_{k-3} & \left(j+j=f_{k-2}-1\right) \\
\chi(k: 2,4) \chi(k: 0,4,5)^{i}(-1)^{[i / 2]} f_{k-3} & (j=-1) \\
\chi(k: 1,2,3,5) \chi(k: 1,4)^{i} f_{k-3} & (\text { otherwise)} \\
0 & (k=2,3,4, \cdots) .
\end{array}
$$

Let

$$
\mathcal{U}_{k}:=\left\{\left(n, f_{k}\right) ; n \in \mathbf{N} \text { and } n \equiv_{k+1} 0\right\}
$$

$$
\begin{aligned}
\mathcal{V}_{k}:= & \left\{\left(n, f_{k}\right) ; n \in \mathbf{N} \text { and } n \equiv_{k+2} f_{k+1}+f_{k-1}\right\} \\
T_{k}:= & \left(V_{k}+\left(-f_{k-2}, f_{k}\right)\right) \cap \Omega \\
& (k=1,2,3, \cdots)
\end{aligned}
$$

where $V+(x, y):=\{v+x, w+y) ;(v, w) \in V\}$ for $V \subset \mathbf{Z}^{2},(x . y) \in \mathbf{Z}^{2}$.
Theorem 5 It holds that

$$
\Omega=\bigcup_{k=1}^{\infty}\left(\bigcup_{(i, j) \in \mathcal{U}_{k}}\left(U_{k}+(i, j)\right) \cup \bigcup_{(i, j) \in \mathcal{V}_{k}}\left(V_{k}+(i, j)\right) \cup T_{k}\right),
$$

where the right hand side is a disjoint union, so that Ω is tiled by the tiles U_{k} 's, V_{k} 's and T_{k} 's. Moreover, for any $(n, m) \in \Omega$, if $(n, m)=(i, j)+$ $\left(i^{\prime}, j^{\prime}\right)$ with $(i, j) \in U_{k}$ and $\left(i^{\prime}, j^{\prime}\right) \in \mathcal{U}_{k}$, then we have $H_{n, m}=u_{k}(i, j)$ and $\bar{H}_{n, m}=\bar{u}_{k}(i, j)$. Also, if $(n, m)=(i, j)+\left(i^{\prime}, j^{\prime}\right)$ with $(i, j) \in V_{k}$ and either $\left(i^{\prime}, j^{\prime}\right) \in \mathcal{V}_{k}$ or $\left(i^{\prime}, j^{\prime}\right)=\left(-f_{k-2}, f_{k}\right)$, then we have $H_{n, m}=v_{k}(i, j)$ and $\bar{H}_{n, m}=\bar{v}_{k}(i, j)$. Furthermore, in this tiling, the tiles U_{k}, V_{k} and T_{k} with $k \geq 2$ are followed by the sequences of smaller tiles $U_{k-1} V_{k-1} U_{k-1}, U_{k-1}$ and U_{k-1}, respectively, as shown in Figure 1.

Proof. Take an arbitrary point $(n, m) \in \Omega$. Let $f_{k-1} \leq m<f_{k}$. If $n+m-f_{k} \geq 0$, define $0 \leq i<f_{k+2}$ by $i \equiv_{k+2} n$.

Case $1 n+m-f_{k}<0$: We get $(n, m) \in T_{k}$.
Case 2 $0 \leq i<f_{k-1}$: We get $(n, m) \in U_{k}+\left(n+m-i-f_{k}, f_{k}\right)$.
Case 3 $f_{k-1} \leq i<f_{k+1}: \operatorname{We} \operatorname{get}(n, m) \in U_{k+1}+\left(n+m-i-f_{k+1}, f_{k+1}\right)$.
$\underline{\text { Case } 4} f_{k+1} \leq i<f_{k+1}+f_{k-1}$: We get $(n, m) \in U_{k}+\left(n+m-i+f_{k-1}, f_{k}\right)$.
Case $5 f_{k+1}+f_{k-1} \leq i<f_{k+2}$: We get $(n, m) \in V_{k}+\left(n+m-i+2 f_{k-1}, f_{k}\right)$.
The fact that the written-in values coincide with $H_{n, m}$ and $\bar{H}_{n, m}$ follows from Lemma 18 (first case in u_{k} and \bar{u}_{k}), Theorem 3 (second case), Lemma 21 (third case), Theorem 4 (fourth case), Corollary 3 (fifth case), Lemma 19 (first case in v_{k} and \bar{v}_{k}), Theorem 3 (second case), Lemma 20 (third case), Lemma 20 (fourth case) and Corollary 3 (fifth case). The m in the preceding lemmas and theorems coincides with $f_{k}+j$ in Theorem 5 while the meanings of the symbols k, i, n are not necessarily the same between them.

Figure 1: Tiling for $H_{m, n}$

5 Padé approximation

Let $\varphi=\varphi_{0} \varphi_{1} \varphi_{2} \cdots$ be an infinite sequence over a field $\mathbf{K}, \hat{H}_{n, m}:=H_{n, m}(\varphi)$ be the Hankel determinant (3), and $\varphi(z)$ the formal Laurent series (4) with $h=-1$. We also denote the Hankel matrices by

$$
\begin{gather*}
\hat{M}_{n, m}:=\left(\varphi_{n+i+j}\right)_{i, j=0,1, \cdots m-1} \tag{25}\\
(n=0,1,2, \ldots ; m=1,2,3, \cdots)
\end{gather*}
$$

so that $\hat{H}_{n, m}=\operatorname{det} \hat{M}_{n, m}$.
The following proposition is well known ([1], for example). But we give a proof for self-containedness.

Proposition 1 (1) For any $m=1,2, \cdots$, a Padé pair (P, Q) of order m for φ exists. Moreover, for each m, the rational function $P / Q \in \mathbf{K}(z)$ is determined uniquely for such Padé pairs (P, Q).
(2) For any $m=1,2, \cdots, m$ is a normal index for φ if and only if $\hat{H}_{0, m}(\varphi) \neq$ 0 .

Proof. Let

$$
\begin{aligned}
P & =p_{0}+p_{1} z+p_{2} z^{2}+\cdots+p_{m} z^{m} \\
Q & =q_{0}+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}
\end{aligned}
$$

Then, the condition $\|Q \varphi-P\|<\exp (-m)$ is equivalent to

$$
\left.\begin{array}{lllll}
& & & & -p_{m} \\
& & q_{m} \varphi_{0} & -p_{m-1} & =0 \\
& & \cdots & \cdots
\end{array}\right)
$$

Furthermore, Equation (26) for $\left(q_{0} q_{1} \cdots q_{m}\right)$ is equivalent to

$$
\begin{equation*}
\left(q_{0} q_{1} \cdots q_{m-1}\right) \hat{M}_{0, m}+q_{m}\left(\varphi_{m} \varphi_{m+1} \cdots \varphi_{2 m-1}\right)=(00 \cdots 0) \tag{27}
\end{equation*}
$$

where $\left(p_{0} p_{1} \cdots p_{m}\right)$ is determined by $\left(q_{0} q_{1} \cdots q_{m}\right)$ by the upper half of Equation (26). There are two cases.

Case 1: $\hat{H}_{0, m}=0$. In this case, since $\operatorname{det} \hat{M}_{0, m}=\hat{H}_{0, m}=0$, there exists a nonzero vector $\left(q_{0} q_{1} \cdots q_{m-1}\right)$ such that $\left(q_{0} q_{1} \cdots q_{m-1}\right) \hat{M}_{0, m}=O$. Then, Equation (27) is satisfied with this $\left(q_{0} q_{1} \cdots q_{m-1}\right)$ and $q_{n}=0$.

Case 2: $\hat{H}_{0, m} \neq 0$. In this case, since $\operatorname{det} \hat{M}_{0, m}=\hat{H}_{0, m} \neq 0$, there exists a unique vector $\left(q_{0} q_{1} \cdots q_{m-1}\right)$ such that

$$
\begin{equation*}
\left(q_{0} q_{1} \cdots q_{m-1}\right) \hat{M}_{0, m}=-\left(\varphi_{m} \varphi_{m+1} \cdots \varphi_{2 m-1}\right) \tag{28}
\end{equation*}
$$

Then, (27) is satisfied with this $\left(q_{0} q_{1} \cdots q_{m-1}\right)$ and $q_{m}=1$.
Thus, a Padé pair of order m exists. Moreover, by the above arguments, a Padé pair (P, Q) of order m with deg $Q<m$ exists if and only if $\hat{H}_{0, m}=0$, since if $\hat{H}_{0, m} \neq 0$, then by $(27), q_{m}=0$ implies $\left(q_{0} q_{1} \cdots q_{m-1}\right)=(00 \cdots 0)$ and hence, $Q=0$.

Now we prove that for any Padé pairs (P, Q) and $\left(P^{\prime}, Q^{\prime}\right)$ of order m, it holds $P / Q=P^{\prime} / Q^{\prime}$. By (5), we have

$$
\|\varphi-P / Q\|<\exp (-n-\operatorname{deg} Q)
$$

and

$$
\left\|\varphi-P^{\prime} / Q^{\prime}\right\|<\exp \left(-m-\operatorname{deg} Q^{\prime}\right)
$$

Hence, we have

$$
\left\|P / Q-P^{\prime} / Q^{\prime}\right\|<\exp \left(-m-\operatorname{deg} Q \wedge \operatorname{deg} Q^{\prime}\right)
$$

Therefore,

$$
\left\|P Q^{\prime}-P^{\prime} Q\right\|<\exp \left(-m+\operatorname{deg} Q \vee \operatorname{deg} Q^{\prime}\right) \leq 1
$$

Since $P Q^{\prime}-P^{\prime} Q$ is a polynomial of $z,\left\|P Q^{\prime}-P^{\prime} Q\right\|$ is either 0 or not less than 1. Hence, the above inequality implies $P Q^{\prime}-P^{\prime} Q=0$, which completes the proof.

In view of (26), without loss of generality, we can put

$$
\begin{align*}
P & =p_{0}+p_{1} z+p_{2} z^{2}+\cdots+p_{m-1} z^{m-1} \\
Q & =q_{0}+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m} . \tag{29}
\end{align*}
$$

Theorem 6 Let (P, Q) be the normalized Padé pair for φ with $\operatorname{deg} Q$ as its normal index m with P, Q given by (29). Then, we have
(1) $Q(z)=\hat{H}_{0, m}^{-1} \operatorname{det}\left(z \hat{M}_{0, m}-\hat{M}_{1, m}\right)$.
(2) $\operatorname{det}\left(z I-\hat{M}_{0, m}\right)=$

where I is the unit matrix of size m.

$$
\begin{equation*}
\hat{H}_{0, m}=(-1)^{[m / 2]} \prod_{z ; Q(z)=0} P(z)=(-1)^{[m / 2]} p_{k}^{m} \prod_{z ; P(z)=0} Q(z), \tag{3}
\end{equation*}
$$

where $\prod_{z ; R(z)=0}$ denotes the product over all the roots of the polynomial $R(z)$ with their multiplicity and p_{k} is the leading coefficient of $P(z)$, that is, $p_{m-1}=\cdots=p_{k+1}=0, p_{k} \neq 0$ if $P(z)$ is not the zero polynomial, otherwise, $p_{k}=0$.

Proof. (1) Note that $q_{m}=1$ by the assumption that (P, Q) is the normalized Padé pair. By (28), we have

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & & \ddots & & \\
& & & & 0 & 1 \\
-q_{0} & -q_{1} & & \cdots & -q_{m-2} & -q_{m-1}
\end{array}\right) \hat{M}_{0, m}=\hat{M}_{1, m}
$$

Since $\hat{H}_{0, m}=\operatorname{det} \hat{M}_{0, m} \neq 0$ by the normality of the index m, it follows that

$$
\begin{aligned}
Q(z) & =\operatorname{det}\left(z I-\left(\begin{array}{rrrrr}
0 & 1 & & & \\
& 0 & 1 & & \\
& & & \ddots & \\
& & & & \\
& & & 1 \\
-q_{0} & -q_{1} & \cdots & -q_{m-2} & -q_{m-1}
\end{array}\right)\right) \\
& =\operatorname{det}\left(z I-\hat{M}_{1, m} \hat{M}_{0, m}^{-1}\right) \\
& =\hat{H}_{0, m}^{-1} \operatorname{det}\left(z \hat{M}_{0, m}-\hat{M}_{1, m}\right) .
\end{aligned}
$$

(2) We define the matrices:

$$
\begin{aligned}
& P_{m}:=\left(\begin{array}{ccccc}
p_{m-1} & p_{m-2} & \cdots & p_{1} & p_{0} \\
p_{m-2} & \cdots & \cdots & p_{0} & \\
\vdots & & . & & \\
p_{1} & . . & & 0 & \\
p_{0} & & & &
\end{array}\right) \\
& P_{m-1}^{\prime}:=\left(\begin{array}{ccccc}
& & & & p_{m-1} \\
& 0 & & p_{m-1} & p_{m-2} \\
& & . \cdot & \vdots & \vdots \\
& . \cdot & & \vdots & p_{2} \\
p_{m-1} & p_{m-2} & \cdots & p_{2} & p_{1}
\end{array}\right) \\
& Q_{m}:=\left(\begin{array}{ccccc}
1 & & & & \\
q_{m-1} & 1 & & 0 & \\
\vdots & & \ddots & & \\
\vdots & & & \ddots & \\
q_{1} & q_{2} & \cdots & q_{m-1} & 1
\end{array}\right) \\
& Q_{m}^{\prime}:=\left(\begin{array}{ccccc}
& & & & 1 \\
& & & 1 & q_{m-1} \\
& & . & & \vdots \\
& . . & & & \vdots \\
1 & q_{m-1} & \cdots & q_{2} & q_{1}
\end{array}\right) \\
& Q_{m-1}^{\prime \prime}:=\left(\begin{array}{ccccc}
1 & & & & \\
q_{m-1} & 1 & & 0 & \\
\vdots & & \ddots & & \\
\vdots & & & \ddots & \\
q_{2} & q_{3} & \cdots & q_{m-1} & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
Q_{m, m-1} & :=\left(\begin{array}{ccccc}
q_{1} & q_{2} & \cdots & q_{m-2} & q_{m-1} \\
q_{0} & q_{1} & \cdots & q_{m-3} & q_{m-2} \\
& q_{0} & q_{1} & \cdots & q_{m-3} \\
& & \ddots & \ddots & \vdots \\
& 0 & & \ddots & q_{1} \\
& & & & q_{0}
\end{array}\right) \\
\Phi_{m-1} & :=\left(\begin{array}{ccccc}
& 0 & & \varphi_{0} & \varphi_{1} \\
& & . \cdot & \vdots & \vdots \\
& . . & & \vdots & \varphi_{m-3} \\
\varphi_{0} & \varphi_{1} & \cdots & \varphi_{m-3} & \varphi_{m-2}
\end{array}\right) .
\end{aligned}
$$

We denote by O the zero matrices of various sizes. We also denote by I_{n} the unit matrix of size n. By (26), we have

$$
\begin{aligned}
& \operatorname{det}\left(z I-\hat{M}_{0, m}\right) \\
= & \operatorname{det}\left(z\left(\begin{array}{ll}
O & O \\
O & I_{m}
\end{array}\right)-\left(\begin{array}{ll}
-I_{m-1} & O \\
Q_{m}^{-1} Q_{m, m-1} & \hat{M}_{0, m}
\end{array}\right)\right) \\
= & \operatorname{det}\left(\left(\begin{array}{ll}
I_{m-1} & O \\
O & Q_{m}
\end{array}\right)\left(z\left(\begin{array}{ll}
O & O \\
O & I_{m}
\end{array}\right)-\left(\begin{array}{cc}
-I_{m-1} & O \\
Q_{m}^{-1} Q_{m, m-1} & \hat{M}_{0, m}
\end{array}\right)\right)\right) \\
= & \operatorname{det}\left(z\left(\begin{array}{ll}
O & O \\
O & Q_{m}
\end{array}\right)-\left(\begin{array}{ll}
-I_{m-1} & O \\
Q_{m, m-1} & Q_{m} \hat{M}_{0, m}
\end{array}\right)\right) \\
= & \operatorname{det}\left(\left(z\left(\begin{array}{ll}
O & O \\
O & Q_{m}
\end{array}\right)-\left(\begin{array}{cc}
-I_{m-1} & O \\
Q_{m, m-1} & Q_{m} \hat{M}_{0, m}
\end{array}\right)\right)\left(\begin{array}{ll}
I_{m-1} & O \\
O & \Phi_{m-1} \\
O & I_{m}
\end{array}\right)\right) \\
= & \operatorname{det}\left(z\left(\begin{array}{ll}
O & O \\
O & Q_{m}
\end{array}\right)-\left(\begin{array}{cc}
-I_{m-1} & O \\
Q_{m, m-1} & \Phi_{m-1}
\end{array}\right)\right),
\end{aligned}
$$

where we use (26) to get the last equality. Hence

$$
\begin{aligned}
& \operatorname{det}\left(z I-\hat{M}_{0, m}\right) \\
= & \operatorname{det}\left(z\left(\begin{array}{cc}
O & O \\
O & Q_{m}
\end{array}\right)-\left(\begin{array}{ccc}
-I_{m-1} & O & -\Phi_{m-1} \\
Q_{m, m-1} & P_{m}
\end{array}\right)\right) \\
= & \operatorname{det}\left(\left(\begin{array}{ll}
Q_{m-1}^{\prime \prime} & O \\
O & I_{m}
\end{array}\right)\left(z\left(\begin{array}{cc}
O & O \\
O & Q_{m}
\end{array}\right)-\left(\begin{array}{ccc}
-I_{m-1} & O-\Phi_{m-1} \\
Q_{m, m-1} & P_{m}
\end{array}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(z\left(\begin{array}{cc}
O & O \\
O & Q_{m}
\end{array}\right)-\left(\begin{array}{ccc}
-Q_{m-1}^{\prime \prime} & O & -P_{m-1}^{\prime} \\
Q_{m, m-1} & P_{m}
\end{array}\right)\right) \\
& =(-1)^{m} \operatorname{det}\left(\left(\begin{array}{lll}
Q_{m-1}^{\prime \prime} & O & P_{m-1}^{\prime} \\
Q_{m, m-1} & P_{m}^{\prime}
\end{array}\right)-z\left(\begin{array}{cc}
O & O \\
O & Q_{m}
\end{array}\right)\right) \\
& =(-1)^{m} \operatorname{det}\left(\begin{array}{lll}
I_{m} & O & z I_{m}^{\prime} \\
O & Q_{m-1}^{\prime \prime} & O P_{m-1}^{\prime} \\
Q_{m}^{\prime} & Q_{m, m-1} & P_{m}
\end{array}\right),
\end{aligned}
$$

which implies (2).
(3) By (2), we have

$$
\begin{aligned}
& \hat{H}_{0, m}=(-1)^{m} \operatorname{det}\left(0 I-\hat{M}_{0, m}\right) \\
&=(-1)^{[m / 2]}\left|\begin{array}{lllllllll}
p_{m-1} & & & & & & \\
p_{m-2} & p_{m-1} & & & & \\
q_{m-1} & 1 & & & \\
\vdots & & \ddots & & & \vdots & \ddots & \ddots & \\
p_{1} & \ddots & & p_{m-1} & & q_{2} & \ddots & & 1 \\
p_{0} & \ddots & & p_{m-2} & p_{m-1} & q_{1} & \ddots & & q_{m-1} \\
& p_{0} & & & p_{m-2} & q_{0} & \ddots & & q_{m-2} \\
& & \ddots & \vdots & \vdots & & \ddots & & \vdots \\
& & & p_{0} & p_{1} & & & \ddots & q_{1} \\
p_{0} & & & & q_{0}
\end{array}\right|,
\end{aligned}
$$

which completes the proof since the determinant in the last-side in the above equality is Sylvester's determinant for $P(z)$ and $Q(z)$.

For a finite or infinite sequence $a_{0}(z), a_{1}(z), a_{2}(z), \cdots$ of elements in $\mathbf{K}\left(\left(z^{-1}\right)\right)$, we use the notation

$$
\left[a_{0}(z) ; a_{1}(z), a_{2}(z), \cdots, a_{n}(z)\right]:=a_{0}(z)+\frac{1}{a_{1}(z)+\frac{1}{a_{2}(z)+}} \begin{array}{ll}
& \\
& \ddots \\
& \\
& \\
& \\
& +\frac{1}{a_{n}(z)}
\end{array}
$$

and

$$
\begin{equation*}
\left[a_{0}(z) ; a_{1}(z), a_{2}(z), \cdots\right]:=\lim _{n \rightarrow \infty}\left[a_{0}(z) ; a_{1}(z), a_{2}(z), \cdots, a_{n}(z)\right] \tag{30}
\end{equation*}
$$

provided that the limit exists, where the limit is taken with respect to the metric induced by the non-Archimedean norm in $\mathbf{K}\left(\left(z^{-1}\right)\right)$.

We define

$$
\begin{align*}
p_{0}(z)= & a_{0}(z), \quad p_{-1}(z)=1, \quad q_{0}(z)=1, \quad q_{-1}(z)=0 \\
p_{n}(z)= & a_{n}(z) p_{n-1}(z)+p_{n-2}(z) \\
q_{n}(z)= & a_{n}(z) q_{n-1}(z)+q_{n-2}(z) \tag{31}\\
& (n=1,2,3, \cdots)
\end{align*}
$$

for any given sequence $a_{1}(z), a_{2}(z), \cdots \in \mathbf{K}\left(\left(z^{-1}\right)\right)$. Then $p_{n}(z), q_{n}(z) \in$ $\mathbf{K}\left(\left(z^{-1}\right)\right), p_{n}(z) \neq 0$ if $q_{n}(z)=0$, and

$$
\frac{p_{n}(z)}{q_{n}(z)}=\left[a_{0}(z) ; a_{1}(z), a_{2}(z), \cdots, a_{n}(z)\right] \in \mathbf{K}\left(\left(z^{-1}\right)\right) \cup\{\infty\} \quad(n \geq 0)
$$

holds, where we mean $\psi / 0:=\infty$ for $\psi \in \mathbf{K}\left(\left(z^{-1}\right)\right) \backslash\{0\}$, and $\psi+\infty:=$ $\infty, \psi / \infty:=0$ for $\psi \in \mathbf{K}\left(\left(z^{-1}\right)\right)$. By using (31), it can be shown that the limit (30) always exists in the set $\mathbf{K}\left(\left(z^{-1}\right)\right)$ as far as

$$
\begin{equation*}
a_{n}(z) \in \mathbf{K}[z] \quad(n \geq 0), \quad \operatorname{deg} a_{n}(z) \geq 1 \quad(n \geq 1) \tag{32}
\end{equation*}
$$

For $\varphi(z) \in \mathbf{K}\left(\left(z^{-1}\right)\right)$ given by (4), we denote by $\lfloor\varphi(z)\rfloor$ the polynomial part of $\varphi(z)$, which is defined as follows:

$$
\lfloor\varphi(z)\rfloor:=\sum_{k=0}^{h} \varphi_{h} z^{-k+h} \in \mathbf{K}[z] .
$$

By T, we denote the mapping $T: \mathbf{K}\left(\left(z^{-1}\right)\right) \backslash\{0\} \rightarrow \mathbf{K}\left(\left(z^{-1}\right)\right)$ defined by

$$
T(\psi(z)):=\frac{1}{\psi(z)}-\left\lfloor\frac{1}{\psi(z)}\right\rfloor \quad\left(\psi(z) \in \mathbf{K}\left(\left(z^{-1}\right)\right) \backslash\{0\}\right) .
$$

Then, for any given $\varphi(z) \in \mathbf{K}\left(\left(z^{-1}\right)\right)$, we can define the continued fraction expansion of $\varphi(z)$:

$$
\varphi(z)= \begin{cases}{\left[a_{0}(z) ; a_{1}(z), a_{2}(z), \cdots, a_{N-1}(z)\right]} & \text { if } \varphi(z) \in \mathbf{K}(z) \tag{33}\\ {\left[a_{0}(z) ; a_{1}(z), a_{2}(z), a_{3}(z), \cdots\right]} & \text { otherwise }\end{cases}
$$

with $a_{n}(z)$ satisfying (32) according to the following algorithm.

Continued Fraction Algorithm :

$$
\begin{gathered}
a_{0}(z)=\lfloor\varphi(z)\rfloor, \quad a_{n}(z)=\left\lfloor\frac{1}{T^{n-1}\left(\varphi(z)-a_{0}(z)\right)}\right\rfloor \\
N=N(\varphi(z)):=\inf \left\{m ; T^{m-1}(\varphi(z))=0\right\} \quad(\inf \emptyset:=\infty) .
\end{gathered}
$$

We note that if $\varphi(z) \in \mathbf{K}(z)$, then $N<\infty$; if $\varphi(z) \in \mathbf{K}\left(\left(z^{-1}\right)\right) \backslash \mathbf{K}(z)$, then $N=\infty$ and the continued fraction (33) converges to the given $\varphi(z) \in \mathbf{K}(z)$. We say a continued fraction is admissible if it is obtained by the algorithm. We remark that a continued fraction (33) is admissible if and only if (32) holds.

The following proposition is known [2], but we give a proof for completeness.

Proposition 2 The set of all $P / Q \in \mathbf{K}(z)$ for Padé pairs (P, Q) for $\varphi(z) \in$ $\mathbf{K}((z))$ coincides with the set of convergents $p_{n}(z) / q_{n}(z)(0 \leq n<N)$ of the continued fraction expansion of $\varphi(z)$. Moreover, m is a normal index if and only if m is a degree of $q_{n}(z)$ for some $n=0,1,2, \cdots$ (with $n<N$ if $\varphi(z) \in \mathbf{K}(z))$.

Proof. Note that

$$
\begin{aligned}
\varphi(z) & =\frac{\left(a_{n}(z)+T^{n}\left(\varphi(z)-a_{0}\right)\right) p_{n-1}(z)+p_{n-2}(z)}{\left(a_{n}(z)+T^{n}\left(\varphi(z)-a_{0}\right)\right) q_{n-1}(z)+q_{n-2}(z)} \\
(-1)^{n} & =p_{n-1}(z) q_{n-2}(z)-p_{n-2}(z) q_{n-1}(z) .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left\|q_{n}(z) \varphi(z)-p_{n}(z)\right\| \\
= & \left\|\frac{(-1)^{n} T^{n}\left(\varphi(z)-a_{0}(z)\right)}{q_{n}(z)+T^{n}\left(\varphi(z)-a_{0}(z)\right) q_{n-1}(z)}\right\| \\
= & \exp \left(-\operatorname{deg} a_{n+1}(n)-\operatorname{deg} q_{n}(z)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\left\|q_{n}(z) \varphi(z)-p_{n}(z)\right\|<\exp \left(-\operatorname{deg} q_{n}(z)\right) \quad(n<N) \tag{34}
\end{equation*}
$$

In the case $N<\infty$, the left-hand side of (34) turns out to be 0 for $n=$ $N-1$. Therefore, $\left(p_{n}(z), q_{n}(z)\right)$ is a Padé pair of order $m=\operatorname{deg} q_{n}(z)$ for all $m \in\left\{\operatorname{deg} q_{n}(z) ; 0 \leq n<N\right\}$.

Conversely, for any $k=1,2, \cdots$, let (P, Q) be a Padé pair of order k. Let $\operatorname{deg} q_{n}(z) \leq k<\operatorname{deg} q_{n+1}$ for some $n=0,1,2, \cdots$ with $n<N\left(\operatorname{deg} q_{N}(z):=\right.$ ∞). Then, since $\operatorname{deg} Q \leq k<\operatorname{deg} q_{n+1}$, it follows from (34) that

$$
\begin{aligned}
\left\|\varphi(z)-\frac{p_{n}(z)}{q_{n}(z)}\right\| & =\exp \left(-\operatorname{deg} q_{n}(z)-\operatorname{deg} q_{n+1}(z)\right) \\
& <\exp \left(-\operatorname{deg} q_{n}(z)-\operatorname{deg} Q\right)
\end{aligned}
$$

Since (P, Q) be a Padé pair of order k, we have

$$
\begin{aligned}
\left\|\varphi(z)-\frac{P}{Q}\right\| & <\exp (-k-\operatorname{deg} Q) \\
& \leq \exp \left(-\operatorname{deg} q_{n}(z)-\operatorname{deg} Q\right)
\end{aligned}
$$

Therefore, we have

$$
\left\|\frac{P}{Q}-\frac{p_{n}(z)}{q_{n}(z)}\right\|<\exp \left(-\operatorname{deg} q_{n}(z)-\operatorname{deg} Q\right)
$$

On the other hand, if $P / Q \neq p_{n}(z) / q_{n}(z)$, then

$$
\begin{aligned}
\left\|\frac{P}{Q}-\frac{p_{n}(z)}{q_{n}(z)}\right\| & =\left\|\frac{P q_{n}(z)-Q p_{n}(z)}{Q q_{n}(z)}\right\| \\
& \geq \exp \left(-\operatorname{deg} q_{n}(z)-\operatorname{deg} Q\right)
\end{aligned}
$$

which is a contradiction. Thus we have $P / Q=p_{n}(z) / q_{n}(z)$.
Note that $p_{n}(z) / q_{n}(z)$ is irreducible for any $n=1,2, \cdots$ with $n<N$, since $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}$. Let $m=\operatorname{deg} q_{n}(z)$ for some $n=1,2, \cdots$ with $n<N$. Take any Padé pair (P, Q) of order m. Then $\operatorname{deg} Q \leq m$. On the other hand, by the above argument, we have $P / Q=p_{n}(z) / q_{n}(z)$. Since $p_{n}(z) / q_{n}(z)$ is irredusible, this implies that $\operatorname{deg} Q \geq \operatorname{deg} q_{n}(z)=m$. Thus, m is a normal index.

Conversely, let $m \geq 0$ be any normal index. Take any Padé pair (P, Q) of order m. Then, by the above argument, there exists $n=0,1,2, \cdots$ with $n<N$ such that $P / Q=p_{n}(z) / q_{n}(z)$. Hence the irreducibility of $p_{n}(z) / q_{n}(z)$ implies $\operatorname{deg} q_{n}(z) \leq \operatorname{deg} Q(\leq m)$. Hence, $\left(p_{n}(z), q_{n}(z)\right)$ is a Padé pair of order m. Since m is a normal index, $\operatorname{deg} q_{n}(z)=m$.

Let us obtain the continued fraction expansions for

$$
\varphi_{\hat{\varepsilon}}(z)=\hat{\varepsilon}_{0} z^{-1}+\hat{\varepsilon}_{1} z^{-2}+\hat{\varepsilon}_{2} z^{-3}+\cdots \in \mathbf{Q}\left(\left(z^{-1}\right)\right)
$$

corresponding to the Fibonacci words $\hat{\varepsilon}=\varepsilon(a, b)$ with $(a, b)=(1,0)$ and $(a, b)=(0,1)$. As in $\S 3$, we use the notations ε and $\bar{\varepsilon}$ for them. The proofs in the following theorems are given only for ε, since the proof is similar for $\bar{\varepsilon}$. In [3], J. Tamura gave the Jacobi-Perron-Parusnikov expansion for a vector consisting of Laurent series with coefficients given by certain substitutions, which contains the following as its special case, cf. the footnote, p. 301 [3]:

Proposition 3 It holds that

$$
(z-1) \varphi_{\varepsilon}(z)=\left[0 ; z^{f_{-2}}, z^{f_{-1}}, z^{f_{0}}, z^{f_{1}}, z^{f_{2}}, \cdots\right] .
$$

Theorem 7 We have the following admissible continued fraction for $\varphi_{\varepsilon}(z)$ and $\varphi \bar{\varepsilon}(z)$:

$$
\begin{aligned}
\varphi_{\varepsilon}(z) & =\left[0 ; a_{1}, a_{2}, a_{3}, \cdots\right] \\
\varphi_{\bar{\varepsilon}}(z) & =\left[0 ; \bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}, \cdots\right]
\end{aligned}
$$

with

$$
\begin{aligned}
& a_{1}=z, a_{2}=-z+1, a_{3}=-\frac{1}{2}(z+1) \\
& a_{2 n+2}=(-1)^{n-1} f_{n}^{2}\left(z^{f_{n}-1}+z^{f_{n}-2}+\cdots+1\right) \\
& a_{2 n+3}=(-1)^{n-1} \frac{1}{f_{n} f_{n+1}}(z-1) \\
& \quad(n=1,2, \cdots),
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{a}_{1}=z^{2}, \quad \bar{a}_{2}=-z \\
& \bar{a}_{2 n+1}=(-1)^{n-1} f_{n-1}^{2}\left(z^{f_{n}-1}+z^{f_{n}-2}+\cdots+1\right) \\
& \bar{a}_{2 n+2}=(-1)^{n-1} \frac{1}{f_{n-1} f_{n}}(z-1) \\
& \quad \quad(n=1,2, \cdots) .
\end{aligned}
$$

Proof. We put

$$
\begin{aligned}
& \theta_{n}:=\left[0 ; z^{f_{n}}, z^{f_{n+1}}, z^{f_{n+2}}, \cdots\right] \quad(n \geq-2) \\
& \xi_{n}:=(-1)^{n-1} \frac{f_{n}^{2} z^{f_{n}}+f_{n-1} f_{n}+f_{n}^{2} \theta_{n+1}}{z-1} \quad(n \geq 1) \\
& \eta_{n} \\
& :=(-1)^{n-1} \frac{z-1}{f_{n} f_{n+1}+f_{n}^{2} \theta_{n+1}} \quad(n \geq 1) \\
& c_{n} \\
& d_{n} \\
& d_{n}
\end{aligned}:=(-1)^{n-1} f_{n}^{2}\left(z^{f_{n-1}}+z^{f_{n}-2}+\cdots+1\right) \quad(n \geq 1), ~(-1)^{n-1} \frac{1}{f_{n} f_{n+1}}(z-1) \quad(n \geq 1) . \quad . \quad .
$$

Then we have

$$
\begin{equation*}
\xi_{n}=\left[c_{n} ; \eta_{n}\right]\left(=c_{n}+\frac{1}{\eta_{n}}\right), \quad \eta_{n}=\left[d_{n} ; \xi_{n}\right] \tag{35}
\end{equation*}
$$

Using

$$
\theta_{n}^{-1}=z^{f_{n}}+\theta_{n+1}
$$

and Proposition 3, we get

$$
\begin{aligned}
\varphi_{\varepsilon}(z) & =\frac{\theta_{-2}}{z-1} \quad\left(\left\|\theta_{-2} /(z-1)\right\|<1\right) \\
& =\left[0 ;(z-1) \theta_{-2}^{-1}\right] \\
& =\left[0 ; z-1+(z-1) \theta_{-1}\right] \quad\left(\left\|-1+(z-1) \theta_{-1}\right\|<1\right) \\
& =\left[0 ; z, \frac{\theta_{-1}^{-1}}{-\theta_{-1}^{-1}+z-1}\right] \\
& =\left[0 ; z, \frac{z+\theta_{0}}{-1-\theta_{0}}\right] \\
& =\left[0 ; z,-z+1+\frac{1+(-z+2) \theta_{0}}{-1-\theta_{0}}\right] \\
& \left(\left\|\frac{1+(-z+2) \theta_{0}}{-1-\theta_{0}}\right\|<1\right) \\
& =\left[0 ; z,-z+1, \frac{-1-\theta_{0}^{-1}}{-z+2+\theta_{0}^{-1}}\right] \\
& =\left[0 ; z,-z+1, \frac{-z-1-\theta_{1}}{2+\theta_{1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[0 ; z,-z+1,-\frac{1}{2}(z+1), \frac{4 \theta_{1}^{-1}+2}{z-1}\right] \\
& =\left[0 ; z,-z+1,-\frac{1}{2}(z+1), \frac{4 z+2+4 \theta_{2}}{z-1}\right] .
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
f(z)=\left[0 ; z,-z+1,-\frac{1}{2}(z+1), \xi_{1}\right] \quad\left(\left\|\xi_{1}^{-1}\right\|<1\right) . \tag{36}
\end{equation*}
$$

From (35) and (36), it follows that

$$
\begin{aligned}
f(z) & =\left[0 ; z,-z+1,-\frac{1}{2}(z+1) c_{1}, d_{1}, \cdots, c_{n}, d_{n}, \xi_{n+1}\right] \\
& =\left[0 ; z,-z+1,-\frac{1}{2}(z+1) c_{1}, d_{1}, c_{2}, d_{2}, \cdots\right]
\end{aligned}
$$

which completes the proof for $\varphi_{\varepsilon}(z)$.
Starting from the identity $\varphi_{\bar{\varepsilon}}(z)=\frac{1-\theta-2}{z-1}$ instead of $\varphi_{\varepsilon}(z)=\frac{\theta-2}{z-1}$, we can get the admissible continued fraction for $\varphi \bar{\varepsilon}(z)$ by the similar fashion as above.

Theorem 8 The numerator $p_{n}:=p_{n}(z)\left(\bar{p}_{n}:=\bar{p}_{n}(z)\right.$, resp.) and the denominator $q_{n}:=q_{n}(z)\left(\bar{q}_{n}:=\bar{q}_{n}(z)\right.$, resp.) of the n-th convergent of the continued fraction expansion for $\varphi_{\varepsilon}(z)$ (and $\varphi_{\bar{\varepsilon}}(z)$, resp.) are given as follows:

$$
\begin{aligned}
& p_{0}=0, \quad p_{1}=1, \quad p_{2}=-z+1 \\
& q_{0}=1, \quad q_{1}=z, \quad q_{2}=-z^{2}+z+1 \\
& p_{2 n-1}= \frac{1}{f_{n-1}}\left(\varepsilon_{0} z^{f_{n}-1}+\varepsilon_{1} z^{f_{n}-2}+\cdots+\varepsilon_{f_{n}-1}\right) \\
& p_{2 n}=(-1)^{n}\left\{f_{n-1} z^{f_{n}}\left(\varepsilon_{0} z^{f_{n-1}-1}+\varepsilon_{1} z^{f_{n-1}-2}+\cdots+\varepsilon_{f_{n-1}-1}\right)\right. \\
&\left.-f_{n-2}\left(\varepsilon_{0} z^{f_{n}-1}+\varepsilon_{1} z^{f_{n}-2}+\cdots+\varepsilon_{f_{n}-1}\right)\right\} /(z-1) \\
& q_{2 n-1}= \frac{1}{f_{n-1}}\left(z^{f_{n}}-1\right) \\
& q_{2 n}=(-1)^{n}\left\{f_{n-1} z^{f_{n}}\left(z^{f_{n-1}-1}+z^{f_{n-1}-2}+\cdots+1\right)\right. \\
&\left.-f_{n-2}\left(z^{f_{n}-1}+z^{f_{n}-2}+\cdots+1\right)\right\} \\
&(n=2,3, \cdots),
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{p}_{0}=0, & \bar{p}_{1}=1 \\
\bar{q}_{0}=1, & \bar{q}_{1}=z^{2} \\
\bar{p}_{2 n-2}= & -\frac{1}{f_{n-2}}\left(\bar{\varepsilon}_{0} z^{f_{n}-1}+\bar{\varepsilon}_{1} z^{f_{n}-2}+\cdots+\bar{\varepsilon}_{f_{n}-1}\right) \\
\bar{p}_{2 n-1}= & (-1)^{n-1}\left\{f_{n-2} z^{f_{n}}\left(\bar{\varepsilon}_{0} z^{f_{n-1}-1}+\bar{\varepsilon}_{1} z^{f_{n-1}-2}+\cdots+\bar{\varepsilon}_{f_{n-1}-1}\right)\right. \\
& \left.-f_{n-3}\left(\bar{\varepsilon}_{0} z^{f_{n}-1}+\bar{\varepsilon}_{1} z^{f_{n}-2}+\cdots+\bar{\varepsilon}_{f_{n}-1}\right)\right\} /(z-1)+f_{n-2} \\
\bar{q}_{2 n-2}= & -\frac{1}{f_{n-2}}\left(z^{f_{n}}-1\right) \\
\bar{q}_{2 n-1}= & (-1)^{n-1}\left\{f_{n-2} z^{f_{n}}\left(z^{f_{n-1}-1}+z^{f_{n-1}-2}+\cdots+1\right)\right. \\
& \left.-f_{n-3}\left(z^{f_{n}-1}+z^{f_{n}-2}+\cdots+1\right)\right\} \\
& (n=2,3, \cdots),
\end{aligned}
$$

where $p_{2 n}$ and $\bar{p}_{2 n-1}$ in the above are polynomials since the numerators are divisible by $z-1$.

Proof. The values for $p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}$ are obtained from Theorem 7 by direct calculations. For a general n, we can prove the formula for p_{n}, q_{n} by induction on n using (31) and Theorem 7 without difficulty.

Remark 4 From Proposition 2 and Theorem 8, it follows that the set of normal indices for $\varphi_{\varepsilon}(z)$ (and $\varphi_{\varepsilon}(z)$, resp.) is $\left\{0, f_{0}=f_{1}-1, f_{1}=\right.$ $\left.f_{2}-1, f_{2}, f_{3}-1, \cdots\right\}\left(\left\{0, f_{1}=f_{2}-1, f_{2}, f_{3}-1, \cdots\right\}\right.$, resp.) which together with Proposition 1 give another proof of the third cases of Theorem 2 with $n=0$.

Remark 5 In [4], the continued fraction expansion for Laurent series corresponding to infinite words over $\{a, b\}$ generated by substitutions of "Fibonacci type" are considered, where a, b will be considered as independent variables.

References

[1] J.-P. Allouche, J. Peyrière, Z.-X. Wen and Z.-Y. Wen, Some properties of the Hankel determinants associated with the Morse sequence, Ann. Inst. Fourier 48 (1998), 1-27.
[2] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moskva, 1988 (Translations of Mathematical Monographs vol. 92 (1991), Amer. Math. Soc.).
[3] J. Tamura, A class of transcendental numbers having explicit g -adic and Jacobi-Perron expansions of arbitrary dimension, Acta Arith. 71 (1995), 301-329.
[4] J. Tamura, Padé approximation for infinite words generated by certain substitutions (submitted to publication).
[5] Z.-X. Wen and Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, Europ. J. Combinatorics 15 (1994), 587-598.

Subject classification: 41A21, 11B39

[^0]: *Osaka City University, Department of Mathematics, 558-8585 Japan / kamae@sci.osaka-cu.ac.jp
 ${ }^{\dagger}$ International Junior College, Faculty of General Education, Ekoda 4-5-1, Nakano-ku, TOKYO, 165 Japan / tamura@rkmath.rikkyo.ac.jp
 ${ }^{\ddagger}$ Tsinghua University, Department of Applied Mathematics, Beijing 430072 P. R. China / wenzy@mail.tsinghua.edu.cn
 ${ }^{\S}$ This research was partially supported by the Hatori Project of the Mathematical Society of Japan.

