Low maximal pattern complexity of infinite permutations

Theoretical Computer Science 412 (2011) pp.2911-2921

S. V. Avgustinovich*, A. Frid‡, T. Kamae§, P. Salimov†

August 13, 2013

Abstract

An infinite permutation α is a linear ordering of \mathbb{N}. We study properties of infinite permutations analogous to those of infinite words and showing some resemblance and some difference between permutations and words. In this paper, we define maximal pattern complexity $p^*_n(n)$ for infinite permutations and show that this complexity function is ultimately constant if and only if the permutation is ultimately periodic; otherwise its maximal pattern complexity is at least n, and the value $p^*_n(n) = n$ is reached on a large family of permutations constructed with the use of Sturmian words. We also conjecture that there are no other infinite permutations of maximal pattern complexity equal to n.

1 Infinite permutations

Let S be a finite or countable ordered set: we shall consider S equal either to \mathbb{N}, or to some finite subset of \mathbb{N}, where $\mathbb{N} = \{0, 1, 2, \ldots\}$. Let \mathcal{A}_S be the set of all sequences of pairwise distinct reals defined on S. Define an equivalence relation \sim on \mathcal{A}_S as follows: let $a, b \in \mathcal{A}_S$, where $a = \{a_s\}_{s \in S}$ and $b = \{b_s\}_{s \in S}$; then $a \sim b$ if and only if for all $s, r \in S$ the inequalities $a_s < a_r$ and $b_s < b_r$ hold or do not hold simultaneously. An equivalence class from \mathcal{A}_S/\sim is called an (S-)permutation. If an S-permutation α is realized by a sequence of reals a, we denote it by $\alpha = \pi$. In particular, a $\{1, \ldots, n\}$-permutation always has a representative with all values in $\{1, \ldots, n\}$, i.e., can be identified with a usual permutation from S_n.

In equivalent terms, a permutation can be considered as a linear ordering of S which may differ from the “natural” one. That is, for $i, j \in S$, the natural order between them corresponds to $i < j$ or $i > j$, while the ordering

* Sobolev Institute of Mathematics SB RAS Koptyug av., 4, 630090 Novosibirsk, Russia
† Satake-dai 5-9-6, 565-0855, Japan
‡ Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk, Russia
we intend to define corresponds to $\alpha_i < \alpha_j$ or $\alpha_i > \alpha_j$. We shall also use the symbols $\gamma_{ij} \in \{<, >\}$ meaning the relations between α_i and α_j, so that we by definition have $\alpha_i \gamma_{ij} \alpha_j$ for all $i \neq j$.

We are interested in properties of infinite permutations analogous to those of infinite words, for example, periodicity and complexity. A permutation $\alpha = \{\alpha_s\}_{s \in S}$ is called t-periodic if for all i and j such that $i, j, i + t, j + t \in S$ we have $\gamma_{ij} = \gamma_{i+t,j+t}$. An \mathbb{N}-permutation is called ultimately t-periodic if these equalities hold provided that $i, j > n_0$ for some n_0. This definition is analogous to that for words: an infinite word w is t-periodic if $w_i = w_{i+t}$ for all i and is ultimately t-periodic if $w_i = w_{i+t}$ for all $i \geq n_0$ for some n_0.

In the previous paper by Fon-Der-Flaass and Frid [4], all periodic \mathbb{N}-permutations have been characterized; in particular, it has been shown that there exists an infinite number of distinct t-periodic permutations for each $t \geq 2$. For example, for each n the permutation with a representative sequence

$$-1, 2n - 2, 1, 2n, 3, 2n + 2, \ldots$$

is 2-periodic, and all such permutations are distinct. So, the situation with periodicity differs from that for words, since the number of distinct t-periodic words on a finite alphabet of cardinality q is clearly finite (and is equal to q^t).

A set $T = \{0, m_1, \ldots, m_{k-1}\}$ of cardinality k, where $0 = m_0 < m_1 < \cdots < m_{k-1}$, is called a (k)-window. It is natural to define T-factors of an infinite permutation α as projections of α to $T+n$, $n \in \mathbb{N}$, considered as permutations on T. Such a projection is denoted by $\alpha_{T+n} = \alpha_n \alpha_{n+m_1} \cdots \alpha_{n+m_{k-1}}$. We call the number of distinct T-factors of α the T-complexity of α and denote it by $p_\alpha(T)$.

In particular, if $T = \{0, 1, 2, \ldots, k - 1\}$, then T-factors of α are called just factors of α and are analogous to factors (or subwords) of infinite words. They are denoted by $\alpha_{[i,i+k]} = \alpha_i \alpha_{i+1} \cdots \alpha_{i+k-1}$, and their number is called the factor complexity $f_\alpha(n)$ of α. This function is analogous to the subword complexity $f_w(n)$ of infinite words which is equal to the number of different words $w_{[i,i+n]}$ of length n occurring in an infinite word w (see [3] for a survey). However, not all the properties of these two functions are similar [4]. Consider in particular the following classical lemma.

Theorem 1 An infinite word w is ultimately periodic if and only if $f_w(n) = C$ for some constant C and all sufficiently large n. If w is not ultimately periodic, then $f_w(n)$ is strictly growing and fits $f_w(n) \geq n + 1$.

Only the first statement of Theorem 1 has an analogue for permutations; as for the second one, the situation with permutations is completely different.

Theorem 2 [4] Let α be an \mathbb{N}-permutation; then $f_\alpha(n) \leq C$ if and only if α is ultimately periodic. At the same time, for each unbounded growing
function \(g(n) \), there exists a \(\mathbb{N} \)-permutation \(\alpha \) with \(f_{\alpha}(n) \leq g(n) \) for all \(n \geq N_0 \) which is not ultimately periodic.

The supporting example of a permutation with low complexity can be defined by the inequalities \(\alpha_{2n} < \alpha_{2n+2} < \alpha_{2n+1} < \alpha_{2n+3} \) for all \(n \geq 0 \), and \(\alpha_{2n_k} < \alpha_{2k+1} < \alpha_{2n_k+2} \) for some sequence \(\{n_k\}_{k=0}^{\infty} \) which grows sufficiently fast.

In this paper we study the properties of another complexity function, namely, maximal pattern complexity

\[
p^*_\alpha(n) = \max_{#T=n} p_{\alpha}(T).
\]

The analogous function \(p^*_w(n) \) for infinite words was defined in 2002 by Kamae and Zamboni [6] where the following statement was proved:

Theorem 3 [6] An infinite word \(w \) is not ultimately periodic if and only if \(p^*_w(n) \geq 2n \) for some \(n \).

Infinite words of maximal pattern complexity \(2n \) include rotation words [6] and also some words built by other techniques [7]. The classification of all words of maximal pattern complexity \(2n \) is an open problem [5].

In this paper, we prove analogous results for infinite permutations and state a conjecture that in the case of permutations, lowest maximal pattern complexity is achieved only in the “Sturmian” case.

2 Lowest complexity

First of all, we prove a lower bound for the maximal pattern complexity of a non-periodic infinite permutation.

Theorem 4 An infinite permutation \(\alpha \) is not ultimately periodic if and only if \(p^*_\alpha(n) \geq n \) for any \(n \).

Proof. Clearly, if a permutation is ultimately periodic, its maximal pattern complexity is ultimately constant, and thus the “if” part of the proof is obvious. Now suppose that \(p^*_\alpha(l) < l \) for some \(l \); we shall prove that \(\alpha \) is ultimately periodic.

Since \(p^*_\alpha(1) = 1 \) (there is exactly one permutation of length one), and the function \(p^* \) is non-decreasing, we see that \(p^*_\alpha(l) < l \) implies that \(p^*_\alpha(n+1) = p^*_\alpha(n) \) for some \(n \leq l \). Consider an \(n \)-window \(T = (0, m_1, \ldots, m_{n-1}) \) such that \(p_{\alpha}(T) = p^*_\alpha(n) \); the equality \(p^*_\alpha(n+1) = p_{\alpha}(T) \) means that for each \(T' = (0, m_1, \ldots, m_{n-1}, m_n) \) with \(m_n > m_{n-1} \) we have \(p_{\alpha}(T) = p^*_\alpha(T') \),

3
that is, each T-permutation which occurs in α can be extended to a T'-permutation which occurs in α by a unique way. Clearly, there exist two equal factors of length $2m_{n-1}$ in α: say,

$$\alpha_{[k,k+2m_{n-1}]} = \alpha_{[k+t,k+t+2m_{n-1}]}.$$

We shall prove that α is ultimately t-periodic, namely, that $\gamma_{ij} = \gamma_{i+t,j+t}$ for all i,j with $k \leq i < j$. The proof will use the induction on the pair i,j starting by the pairs i,j with $k \leq i < j < k + 2m_{n-1}$, for which our statement holds since $\alpha_{[k,k+2m_{n-1}]} = \alpha_{[k+t,k+t+2m_{n-1}]}$.

Now for the induction step: for some $M \geq 2m_{n-1}$, suppose that $\gamma_{ij} = \gamma_{i+t,j+t}$ for all $k \leq i < j < k + M$, that is, $\alpha_{[k,k+M]} = \alpha_{[k+t,k+t+M]}$. We are going to prove that $\gamma_{i,k+M} = \gamma_{i+t,k+t+M}$ for all $i \in \{k, \ldots, k + M - 1\}$, and thus $\alpha_{[k,k+M+1]} = \alpha_{[k+t,k+t+M+1]}$.

Indeed, consider the case $i \in \{k, \ldots, k + M - m_{n-1} - 1\}$ first. Then α_{T+i} is a T-factor of $\alpha_{[k,k+M]}$ and α_{T+i+t} is a T-factor of $\alpha_{[k+t,k+t+M]}$ standing at the same position. So, these T-factors of α are equal, and due to the choice of T, so are their extensions α_{T+i} and α_{T+i+t}, where $T' = (0, m_1, \ldots, m_{n-1}, M - i)$. In particular, the first and last elements of α_{T+i} and α_{T+i+t} are in the same relationship: $\gamma_{i,k+M} = \gamma_{i+t,k+t+M}$, which is what we needed.

Now if $i \in \{k + M - m_{n-1}, \ldots, k + M - 1\}$, we consider $\alpha_{T+i-m_{n-1}}$ which is a T-factor of $\alpha_{[k,k+M]}$ with the last element α_i, and $\alpha_{T+i+t-m_{n-1}}$ which is a T-factor of $\alpha_{[k+t,k+t+M]}$ with the last element α_{i+t}. They are equal, and so are their extensions $\alpha_{T+i-m_{n-1}}$ and $\alpha_{T+i+t-m_{n-1}}$, where $T' = (0, m_1, \ldots, m_{n-1}, M - i + m_{n-1})$. In particular, the next to last and the last elements of these T-permutations are in the same relationship: $\gamma_{i,k+M} = \gamma_{i+t,k+t+M}$ for all $i \in \{k, \ldots, k + M - 1\}$; together with the induction hypothesis it means that $\alpha_{[k,k+M+1]} = \alpha_{[k+t,k+t+M+1]}$. Repeating the induction step we get that $\gamma_{ij} = \gamma_{i+t,j+t}$ for all $k \leq i < j$, that is, the permutation α is ultimately t-periodic.

\[\square\]

3 Sturmian permutations

A one-side infinite word $w = w_0w_1w_2 \cdots$ on the alphabet $\{0,1\}$ is called Sturmian if its subword complexity $f_w(n)$ is equal to $n+1$ for all n. Sturmian words have a number of equivalent definitions [1]; we shall need two of them. First, Sturmian words are exactly aperiodic balanced words which means that for each length n, the number of 1s in factors of w of length n takes only two successive values. Second, Sturmian words are exactly irrational mechanical words which means that there exists some irrational $\sigma \in (0,1)$ and some $\rho \in [0,1)$ such that for all i we have

$$w_i = [\sigma(i+1) + \rho] - [\sigma i + \rho] \text{ or } w_i = [\sigma(i+1) + \rho] - [\sigma i + \rho].$$
These definitions coincide if $\sigma i + \rho$ is never integer; if it is for some (unique) i, the sequences built by these two formulas differ in at most two successive positions. So, we distinguish lower and upper Sturmian words according to the choice of $\lfloor \cdot \rfloor$ or $\lceil \cdot \rceil$ in the definition.

Now let us define a Sturmian permutation $\alpha(w, x, y) = \alpha = \sigma$ associated with a Sturmian word w and positive numbers x and y by its representative sequence a, where a_0 is a real number and for all $i \geq 0$ we have

$$a_{i+1} = \begin{cases} a_i + x, & \text{if } w_i = 0, \\ a_i - y, & \text{if } w_i = 1. \end{cases}$$

Clearly, such a permutation is well-defined if and only if we never have $kx \neq ly$ if k is the number of 0s and l is the number of 1s in some factor of w; and in particular if x and y are rationally independent.

Note that a factor of w of length n corresponds to a factor of α of length $n + 1$, and the correspondence is one-to-one. So, we have $f_\alpha(n) = n$ for all n. In fact, we are going to prove that the maximal pattern complexity of α is also equal to n, and thus the lower bound in Theorem 4 is precise.

Theorem 5 For each Sturmian permutation α we have $p_\alpha(n) \equiv n$.

Proof. Let us start with the situation when $x = \sigma$ and $y = 1 - \sigma$. This case has been proved by M. Makarov in [9], but we give a proof here for the sake of completeness.

If we take $a_0 = \rho$, then by the definition of the Sturmian word, $a_i = \{\sigma i + \rho\}$ holds in the case that w is a lower Sturmian word, and $a_i = 1 - \{1 - \sigma i - \rho\}$ holds in the case that w is an upper Sturmian word. In what follows, we consider lower Sturmian words without loss of generality.

Consider a k-window $T = \{0, m_1, \ldots, m_{k-1}\}$ and the set of T-factors $\alpha_{T+n} = \{\sigma n + \rho\}, \{\sigma (n + m_1) + \rho\}, \ldots, \{\sigma (n + m_{k-1}) + \rho\}$ for all n. Since the set of $\{\sigma n + \rho\}$, $n \in \mathbb{N}$, is dense in $[0, 1]$, the set of T-factors is equal to the set of all permutations $t, \{t + \sigma m_1\}, \ldots, \{t + \sigma m_{k-1}\}$ with $t \in [0, 1]$.

Let us arrange the points $\{t + \sigma m_i\}$ ($i = 0, \ldots, k - 1$) on the unit circle, that is the interval $[0, 1]$ with the points 0 and 1 identified (recall that $m_0 = 0$ by definition). Then, the arrangement partitions the unit circle into k arcs. Since the arrangements for different t's are different only by rotations, the permutation defined by the points is determined by the arc containing the point 0 = 1. Since the number of arcs is k, there are exactly k different permutations defined by the points $\{t + \sigma m_i\}$ ($i = 0, \ldots, k - 1$) with different t's. Thus, $p_\alpha(T) = k$. Since the window T was chosen to be arbitrary, we have $p_\alpha(k) = k$.

Now consider the general case of arbitrary x and y. Let us keep the notation γ_{ij} for the relation between $\alpha(w, \sigma, 1 - \sigma)i$ and $\alpha(w, \sigma, 1 - \sigma)j$, and denote the relation between $\alpha(w, x, y)i$ and $\alpha(w, x, y)j$ by δ_{ij}.
Recall that the weight of a binary word is the number of 1’s in it. Note that by the definition of α, we have $\delta_{i,i+n} = \delta_{j,j+n}$ if $w_{i,i+n}$ and $w_{j,j+n}$ have the same weight. Note also that the weight of a factor of length n is either equal to $b^{n\sigma}$ or to $d^{n\sigma}$. So, in $(w; \sigma_1, \ldots, \sigma_k)$, words $w_{i,i+n}$ and $w_{j,j+n}$ of the same length but of different weight always correspond to $i,i+n \neq j,j+n$, since $(n - [n\sigma])\sigma - [n\sigma](1 - \sigma) = n\sigma - [n\sigma] > 0$ and $(n - [n\sigma])\sigma - [n\sigma](1 - \sigma) = n\sigma - [n\sigma] < 0$.

Now let us fix an arbitrary k-window $T = \{0 = m_0, m_1, \ldots, m_{k-1}\}$ and two positions i and j such that $\alpha(w, \sigma_1, \ldots, \sigma_k)_{T+i} = \alpha(w, \sigma_1, \ldots, \sigma_k)_{T+j}$. Let us prove that $\alpha(w, x, y)_{T+i} = \alpha(w, x, y)_{T+j}$. Indeed, for all $p, r \in \{0, \ldots, k-1\}$ with $p < r$, we have $\gamma_{i,m_p,i+m_r} = \gamma_{j,m_p,j+m_r}$. Due to the arguments above this means that the weight of $w_{i,i+m_p,i+m_r}$ is equal to the weight of $w_{j,j+m_p,j+m_r}$, and thus $\delta_{i,m_p,i+m_r} = \delta_{j,m_p,j+m_r}$. Since a T-permutation is determined by the relations between pairs of its elements, these equalities for all p and r mean that $\alpha(w, x, y)_{T+i} = \alpha(w, x, y)_{T+j}$. So, we have $p^*_{\alpha(w,x,y)}(T) \leq p^*_{\alpha(w,\sigma_1,1-\sigma)}(T)$ and thus $p^*_{\alpha(w,x,y)}(k) \leq p^*_{\alpha(w,\sigma_1,1-\sigma)}(k) = k$: at the same time, $p^*_{\alpha(w,x,y)}(k) \geq k$ since this permutation is not ultimately periodic. So, $p^*_{\alpha(w,x,y)}(k) = k$, and the theorem is proved.

4 Concluding remark

At the moment we conjecture that the described Sturmian permutations are the only permutations of maximal pattern complexity $p^*_\alpha(n) = n$. We hope to prove it is a subsequent work.

References

